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Basic idea

Detection probability should depend on abundance.

Since (repeated) occupancy surveys allow us to estimate detection
probability, this should also provide information about abundance.

WARNING

Results may be sensitive to assumptions that are difficult or
impossible to verify.
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How does detection probability depend on abundance?

p = detection probability

N =number of individuals present at a site

Assumptions

1. There is a constant probability r of detecting each individual

2. Detections of individuals are independent

Then it follows that

p = 1− (1− r)N .
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Number of detections

K = number of replicated surveys

W = number of surveys that detect the species

Pr(W = w) =

(
K

w

)
pw (1− p)K−w

Given the value of N = n we can substitute

p = 1− (1− r)n

to get a conditional probability

Pr(W = w |N = n) = function of K , w , r and n.
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Key idea of Royle-Nichols model

Pr(W = w |N = n) = function of K , w , r and n

Assume that N varies between sites according to some probability
distribution.

Then we can work out the unconditional probability Pr(W = w)
using the law of total probability

Pr(W = w) =
∞∑
n=0

Pr(W = w |N = n)× Pr(N = n).
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Key idea of Royle-Nichols model

Pr(W = w |N = n) = function of K , w , r and n

Pr(W = w) = function of K , w , r + additional parameters
defining the distribution of N

So the parameters in the model that we need to estimate are r and
the parameters defining the distribution on N.

EXAMPLE: If N has Poisson distribution with mean µ

Pr(N = n) =
e−µµn

n!
.

and the parameters to estimate are r and µ.
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What happened to occupancy parameter?

Question: Where has ψ gone?

Answer: Still there, given that we have a probability distribution
for N . . .

ψ = 1− Pr(N = 0)

E.g. If N has Poisson distribution with mean µ

ψ = 1− exp(−µ)
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Example: Wood thrush (from R package unmarked)

Data for wood thrush (Hylocichla mustelina) from North American
Breeding Bird survey (1991)

Point counts at 50 locations along a survey route in New
Hampshire collected over a 30 day period

11 sampling occasions (same observer)

Count 0 1 2 3 4
Frequency 344 162 40 3 1

Counts not always reliable, so reduce data to detection/no
detection



Fitting the basic Royle-Nichols model

Model with constant abundance (mu) and

constant detection probability (r)

AIC: 633.9534

Estimate of log(µ)

Abundance:

Estimate SE z P(>|z|)

0.792 0.158 5.03 5e-07

Estimate of logit(r)

Detection:

Estimate SE z P(>|z|)

-1.21 0.17 -7.14 9.41e-13
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Fitting the basic Royle-Nichols model - implications

Number of individuals at a site assumed to follow a Poisson
distribution with mean estimated as

µ̂ = 2.21

In particular, proportion of occupied sites (ψ) estimated as

Pr(N > 0) = 1− exp(−2.21) = 0.89

(Observed proportion of sites where species detected = 45/50 =
0.9)



Fitting the basic Royle-Nichols model - implications

Probability of detecting an individual estimated as

r̂ = 0.23

E.g. With 2 individuals per site, detection probability
= 1− (1− r)2 = 0.41.

Probability of failing to detect on any of 11 visits to a site with 2
individuals = 1− (1− 0.41)11 = 0.003.

Almost certain to detect species on at least one occasion if present



Empirical Bayes estimates of numbers at each site

Previously we had the conditional probability

Pr(W = w |N = n) = function of K , w , r and n.

We can use Bayes’ Theorem to reverse the conditioning:

Pr(N = n|W = w) =
Pr(W = w |N = n)× Pr(N = n)∑∞
k=0 Pr(W = w |N = k)× Pr(N = k)

Once we have fitted the model, we can estimate these probabilities
for each site.

The resulting estimators of Pr(N = n|W = w) are called empirical
Bayes estimators.
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Empirical Bayes estimates at each site for Woodthrush data
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Aside: Back to the point counts

If N varies across sites as Poisson distribution with mean 2.21 and
individuals are detected with probability 0.23, then expected
distribution of point counts is Poisson with mean
2.21× 0.23 = 0.51.

Frequency distribution of point counts

Count 0 1 2 3 4+
Observed frequency 344 162 40 3 1
Expected frequency 331.2 168.0 42.6 7.2 1.0

Quite a good fit (chi-squared = 3.32, 3 d.f.)

But . . .
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Abundance related to site?
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Detection related to sampling visit?
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Fitting Royle-Nichols model with covariates

Model with abundance (mu) as a function of site number

detection probability (r) as a function of

observation number

AIC: 562.0886 (constant model AIC: 633.9534)

Abundance:

Estimate SE z P(>|z|)

(Intercept) 2.9672 0.21465 13.82 1.85e-43

Site number -0.0676 0.00778 -8.69 3.76e-18

Detection:

Estimate SE z P(>|z|)

(Intercept) -2.5607 0.2641 -9.70 3.15e-22

Obs number 0.0791 0.0254 3.11 1.84e-03



Limitations

Assumptions about detectability

1. There is a constant probability r of detecting each individual

2. Detections of individuals are independent

Assumption of a Poisson distribution for N over sites

Other distributions possible in principle (e.g. negative binomial)
but may be hard to fit in practice.

Goodness of fit?
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