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Result of fitting geometric model to GCN data
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Geometric removal model with min air temperature
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Timed clearance data: mainly slow worms
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Model for timed clearences

• For the timed clearance data, at fixed times parts of the
study area were cleared.

• This was modelled by assuming a global population of
animals of size N, to be estimated.

• Fractions of this number were assumed to be available for
capture during each time interval. Cf Stop-over modelling.

• Using maximum likelihood, the fractions were estimated
as: 0.45, 0.10, 0.17, 0.28, 0.00.

• The estimated number of animals not observed was
N̂0 = 51.
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Stop-over model parameters

- N: population size; M: number of arrival groups.

- wm, µm and σm, m = 1, . . . ,M: The population fractions,
mean arrival times and standard deviations of arrival times
of the M arrival groups,

∑M
m=1 wm = 1. The population

fraction that arrived between occasions b − 1 and b is
denoted by βb−1. In terms of the mixture components,

βb−1 =
M∑

m=1

wm {Fm(b)− Fm(b − 1)} , b = 2, . . . ,T − 1

where Fm(b) = P(X ≤ b) when X ∼ N(µm, σ
2
m). The

first and last intervals are open-ended with
β0 =

∑M
m=1 wmFm(1) and

βT−1 = 1−
∑M

m=1 wmFm(T − 1), ∀m, ensuring that the

entry parameters sum to 1 i.e.
∑T

b=1 βb−1 = 1.
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Stop-over model: M = 3
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Forming the likelihood

If an individual belongs to category t, t = 1, . . . ,T , then it was
removed on sampling occasion t. The unknown number of
individuals that were never detected and therefore never
removed belong to category T + 1.

The probability of belonging to category t, γt , is:

γt =


∑t

b=1

[
βb−1

{∏t−1
k=b(1− pk)

}]
pt , t = 1, . . . ,T

1−
∑T

t=1 γt =
∑T

b=1

[
βb−1

∏T
k=b(1− pk)

]
, t = T + 1

,

The likelihood is multinomial with T + 1 cells,
γt , t = 1, . . . ,T + 1 probabilities and nt , t = 1, . . . ,T + 1
frequencies.
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Stop-over likelihood

The parameters are given by

θθθ = (M,N, (wm, µm, σm)m=1,...,M , (pt)t=1...,T )

and the likelihood is:

p(y|θθθ) =
N!(∏T

t=1 nt !
)

(N − D)!

{
T∏
t=1

γntt

}
γN−DT+1 ,

where D =
∑T

t=1 nt . We assume constant capture in the
applications.
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Stop-over, RJMCMC, model averaged, GCN
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Covariates

• In practice we can expect the capture probability to vary

• for fecundability, conception might vary with age and
parity

• for animals capture might vary with temperature. For
GCN, minimum air temperature was used

• We may have a logistic transformation, for a covariate w :

p =
1

1 + exp(α + βw)
.

• It is often necessary to choose the best covariate(s) from a
relevant set.

• Overdispersion may also be included, eg., using a
beta-geometric distribution.
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Modelling

• The simple removal model dates from papers by Moran
(1951) and Zippin (1958)

• It assumes a constant capture probability, p.

• The other parameter is the desired population size, N.

• The same model applies to fecundability data, which
record months to conception for human couples.

• 100 Smokers: 29 16 17 4 3 9 4 5 1 1 1 3 7; N̂ = 95.

• 486 Non-smokers: 198 107 55 38 18 22 7 9 5 3 6 6 12;
N̂ = 476.
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Notation and likelihood for geometric model

• N: initial population size

• nk : size of the kth sample removed from the population,
k = 1, 2, . . . ,T

• xk =
∑k−1

j=1 nj , k = 2, 3, . . . ,T + 1; x1 = 0.

For example: n = (65, 115, 185, . . . )

x = (0, 65, 180, 365, . . . ).

We then form the likelihood:

L(N, p; n) =
N!

(
∏T

k=1 nk !)(N − xT+1)!

[
T∏

k=1

{p(1− p)k−1}nk
]

(1− p)T (N−xT+1)
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Maximum-likelihood estimates

The likelihood simplifies to give

L(N, p;n) =
N!

(
∏T

k=1 nk !)(N − xT+1)!
pxT+1(1− p)TN−

∑T+1
k=1 xk

Maximum-likelihood estimates of the two parameters are
given by the solutions to the equations:

N̂ =
xT+1

1− (1− p̂)T

p̂

1− p̂
− T (1− p̂)T

1− (1− p̂)T
=

∑T
k=1(k − 1)nk

xT+1
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