Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

New models for reptile and amphibian removal data

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

4 July 2014

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

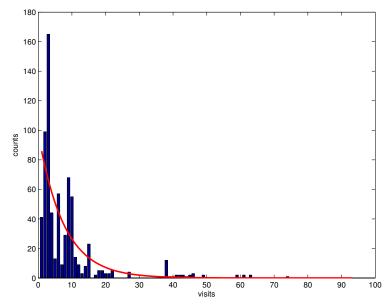
References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Result of fitting geometric model to GCN data



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

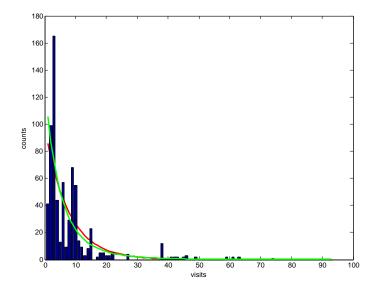
References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

and then adding over dispersion



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

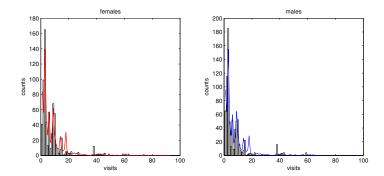
References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Geometric removal model with min air temperature



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

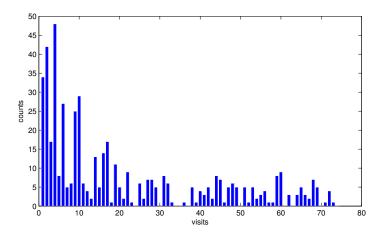
References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Timed clearance data: mainly slow worms



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Model for timed clearences

- For the timed clearance data, at fixed times parts of the study area were cleared.
- This was modelled by assuming a global population of animals of size *N*, to be estimated.
- Fractions of this number were assumed to be available for capture during each time interval. Cf Stop-over modelling.
- Using maximum likelihood, the fractions were estimated as: 0.45, 0.10, 0.17, 0.28, 0.00.
- The estimated number of animals not observed was $\hat{N_0} = 51.$

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

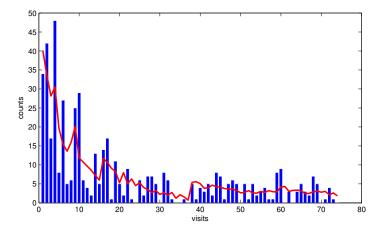
Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

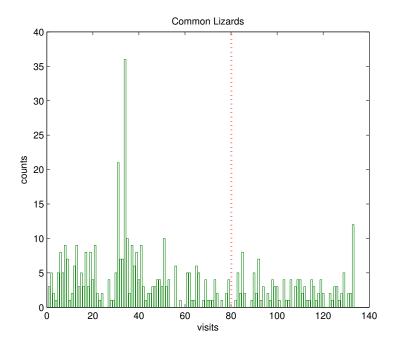
Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Stop-over model parameters

- *N*: population size; *M*: number of arrival groups.

- w_m , μ_m and σ_m , $m = 1, \ldots, M$: The population fractions, mean arrival times and standard deviations of arrival times of the M arrival groups, $\sum_{m=1}^{M} w_m = 1$. The population fraction that arrived between occasions b - 1 and b is denoted by β_{b-1} . In terms of the mixture components,

$$\beta_{b-1} = \sum_{m=1}^{M} w_m \{F_m(b) - F_m(b-1)\}, \ b = 2, \dots, T-1$$

where $F_m(b) = P(X \le b)$ when $X \sim N(\mu_m, \sigma_m^2)$. The first and last intervals are open-ended with $\beta_0 = \sum_{m=1}^{M} w_m F_m(1)$ and $\beta_{T-1} = 1 - \sum_{m=1}^{M} w_m F_m(T-1)$, $\forall m$, ensuring that the entry parameters sum to 1 i.e. $\sum_{b=1}^{T} \beta_{b-1} = 1$.

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introductio and data

covariates &

Stop-over model

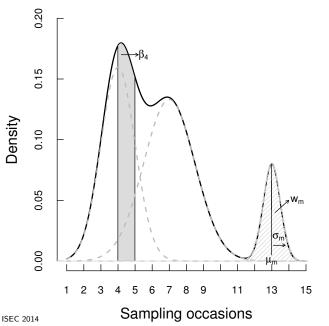
References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Stop-over model: M = 3



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Forming the likelihood

If an individual belongs to category t, t = 1, ..., T, then it was removed on sampling occasion t. The unknown number of individuals that were never detected and therefore never removed belong to category T + 1.

The probability of belonging to category t, γ_t , is:

The likelihood is multinomial with T + 1 cells, γ_t , t = 1, ..., T + 1 probabilities and n_t , t = 1, ..., T + 1 frequencies.

ISEC 2014

 γ

,

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Stop-over likelihood

The parameters are given by

 $\boldsymbol{\theta} = (\boldsymbol{M}, \boldsymbol{N}, (\boldsymbol{w}_m, \boldsymbol{\mu}_m, \boldsymbol{\sigma}_m)_{m=1, \dots, M}, (\boldsymbol{p}_t)_{t=1, \dots, T})$

and the likelihood is:

$$p(\mathbf{y}|\boldsymbol{\theta}) = \frac{N!}{\left(\prod_{t=1}^{T} n_t!\right)(N-D)!} \left\{\prod_{t=1}^{T} \gamma_t^{n_t}\right\} \gamma_{T+1}^{N-D},$$

where $D = \sum_{t=1}^{T} n_t$. We assume constant capture in the applications.

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

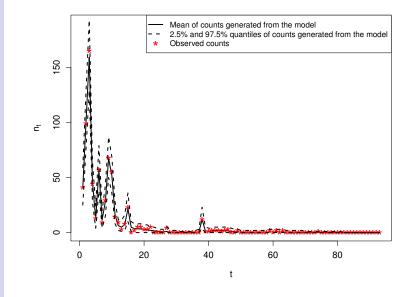
References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Stop-over, RJMCMC, model averaged, GCN



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

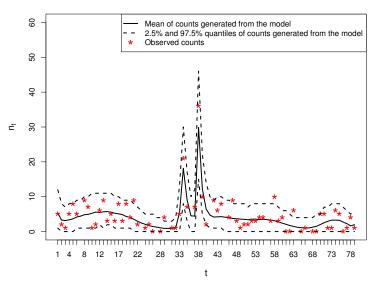
References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Stop-over, RJMCMC, model averaged, lizard



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introductior and data

Complexity: covariates & clearences

Stop-over model

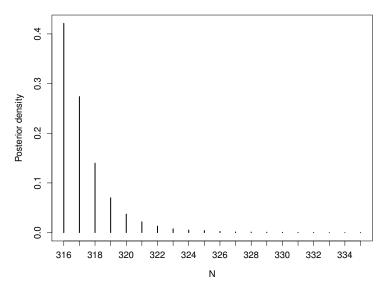
References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Posterior distribution for N for lizard



Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

References

- Dorazio, Jelks and Jordan (2005) *Biometrics*, **61**, 1093–1101.
- Matechou, E., Nicholls, G., Morgan, B.J.T., Collazo, J.A. and Lyons, J.E. (2014). Bayesian mixture models for stopover data. Submitted for publication.
- **3** Moran (1951) *Biometrika*, **38**, 307–311.
- **4** Ridout and Morgan (1991) *Biometrics*, **47**, 1423–1433.
- **5** Zippin (1958) *J. Wildlife Management*, **22**, 82–90.

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Covariates

- In practice we can expect the capture probability to vary
- for fecundability, conception might vary with age and parity
- for animals capture might vary with temperature. For GCN, minimum air temperature was used
- We may have a logistic transformation, for a covariate w:

$$p = rac{1}{1 + \exp(lpha + eta w)}.$$

- It is often necessary to choose the best covariate(s) from a relevant set.
- Overdispersion may also be included, eg., using a beta-geometric distribution.

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Modelling

- The simple removal model dates from papers by Moran (1951) and Zippin (1958)
- It assumes a constant capture probability, p.
- The other parameter is the desired population size, N.
- The same model applies to fecundability data, which record months to conception for human couples.
- 100 Smokers: 29 16 17 4 3 9 4 5 1 1 1 3 7; $\hat{N} = 95$.
- 486 Non-smokers: 198 107 55 38 18 22 7 9 5 3 6 6 12; $\hat{N} = 476$.

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal mode

Forming the likelihood

Maximumlikelihood estimates

Notation and likelihood for geometric model

• N: initial population size

 n_k: size of the kth sample removed from the population, k = 1, 2, ..., T

•
$$x_k = \sum_{j=1}^{k-1} n_j$$
, $k = 2, 3, \dots, T+1$; $x_1 = 0$.

For example: $\mathbf{n} = (65, 115, 185, \dots)$

$$\mathbf{x} = (0, 65, 180, 365, \dots).$$

We then form the likelihood:

$$L(N, p; \mathbf{n}) = \frac{N!}{(\prod_{k=1}^{T} n_k!)(N - \mathbf{x}_{T+1})!} \left[\prod_{k=1}^{T} \{ p(1-p)^{k-1} \}^{n_k} \right] (1-p)^{T(N-\mathbf{x}_{T+1})}$$

Eleni Matechou, Rachel McCrea, Byron Morgan, Richard Griffiths, David Sewell and Brett Lewis

Introduction and data

Complexity: covariates & clearences

Stop-over model

References

Simple removal model

Forming the likelihood

Maximumlikelihood estimates

Maximum-likelihood estimates

The likelihood simplifies to give

$$L(N, p; \mathbf{n}) = \frac{N!}{(\prod_{k=1}^{T} n_k!)(N - \mathbf{x}_{T+1})!} p^{\mathbf{x}_{T+1}} (1-p)^{TN - \sum_{k=1}^{T+1} \mathbf{x}_k}$$

Maximum-likelihood estimates of the two parameters are given by the solutions to the equations:

$$\hat{N} = \frac{x_{T+1}}{1 - (1 - \hat{p})^T}$$
$$\frac{\hat{p}}{1 - \hat{p}} - \frac{T(1 - \hat{p})^T}{1 - (1 - \hat{p})^T} = \frac{\sum_{k=1}^T (k - 1)n_k}{x_{T+1}}$$