Integrated Population Modelling

Byron J.T. Morgan

University of Kent

Collaboration and grant support

- Joint research, with
 - Takis Besbeas,
 - Steve Brooks,
 - Ted Catchpole,
 - Stephen Freeman,
 - Ruth King.
 - José Lahoz-Monfort,
 - Jean-Dominique Lebreton,
 - Eleni Matechou
 - Rachel McCrea.
 - Giacomo Tavecchia
- Research grant support from Max Planck, CEH, BBSRC, NERC and EPSRC

Outline

- Introduction
- Capture-recapture
- Modelling ecological time series
- Kalman filter
- Integrated Population Modelling; not Integral Projection Modelling
- Illustrative results
- Extensions
- New research and discussion
- References

Workshop Bayesian integrated population modelling (IPM) using BUGS and JAGS

- Michael Schaub, Marc Kéry and David Koons
- 25 29 July 2016
- Utah State University, Logan,
- Integrated population models (IPMs) represent the powerful combination, in a single Leslie-type of model, of different data sources that are informative about the dynamics of an animal population
- Typical IPMs combine one or more time-series of counts with another data set that is directly informative about survival probabilities, such as ring-recovery or capture-recapture.
- However, many other sources of demographic information may also be envisioned.
- Currently, for non-statisticians the only practical manner to develop and fit an IPM is using BUGS software (WinBUGS, OpenBUGS, JAGS).

Ringing wild birds

- Birds are given unique marks
- They are then observed later, dead or alive

 Rings take different forms, and birds may be given more than one: colour for resighting and metal for dead recovery

Cap-recap 00000

Examples for identification of wild animals

DAGStat

on Cap-recap Ecological time series Kalman filter IPM extensions New research Summary Reference

OO●OO 00000 00 000000 00 0000000 0 0

Cormorant ring-recovery data

Number	Number Recovered in Year (-1983)								Never		
Released	1	2	3	4	5	6	7	8	9	10	Recovered
30	1	1	1	1	0	0	0	1	0	0	25
147		10	1	1	0	3	1	2	0	1	128
128			3	1	0	1	3	1	1	0	118
199				6	3	0	3	0	4	1	182
291					7	4	5	4	3	0	268
201						5	1	1	4	0	190
179							3	0	2	0	174
242								3	5	0	234
173									2	0	171
45										2	43

Cormorant ring-recovery data for breeding individuals released from 1983-1991.

Product multinomial likelihood

Making use of the assumption of independence of individuals between cohorts, the data can be modelled by a product of multinomials, and the log-likelihood is given by

$$\log(\mathbf{L}_r) = \text{constant} + \sum_{i=1}^{T} \sum_{j=i+1}^{T} d_{i,j} \log(p_{i,j}) + \sum_{i=1}^{T} u_i \log(q_i)$$
 (1)

- In a T-year study, $d_{i,j}$ individuals are reported dead at time t_j , from a cohort of R_i individuals ringed at time t_i , and the number of animals that are not recovered from the i^{th} cohort are denoted by u_i , so that $u_i = R_i \sum_j d_{i,j}$.
- The probability corresponding to the $d_{i,j}$ is denoted by $p_{i,j}$, and we write $q_i = 1 \sum_i p_{i,j}, i = 1, \dots, T$.
- We let ϕ_i denote the annual survival probability of individuals aged $i=1,\ldots,a-1,a^+$, corresponding to a age groups, and λ denote the probability that an individual which dies is reported dead.
- The $p_{i,j}$ are modelled in terms of the annual survival probabilities. For example, for $j \leq a^+, p_{i,j} = \phi_1 \dots \phi_{j-i} (1 \phi_{j-i+1}) \lambda$. Probabilities may be time dependent in general.

Parameter estimates for a time-dependent model

Parameter	MLE	SE	Parameter	MLE	SE
ϕ_1	0.86	0.139	ϕ_6	0.93	0.042
ϕ_2	0.71	0.134	ϕ_7	0.92	0.047
ϕ_3	0.90	0.063	ϕ_8	0.95	0.031
ϕ_4	0.90	0.059	ϕ_9	0.92	0.049
ϕ_5	0.93	0.040	ϕ_{10}	0.98	0.012
			λ	0.22	0.096

- Maximum-likelihood estimates from a model with time-dependent survival probabilities and constant recovery probability fitted to the cormorant ring-recovery data.
- SE denotes standard error, obtained from inverting the Hessian at the maximum-likelihood estimates. Here t_1 represents 1983.

Grey heron: Ardea cinerea

The effect of cold winters

duction Cap-recap Ecological time series Kalman filter IPM extensions New research Summary References

0 0000 0 0000 00 00000 00000 000000 0

Grey heron

The effect of cold winters, measured by frost days

Transition equation

$$\begin{pmatrix} N_{1,t} \\ N_{2,t} \\ \vdots \\ N_{a-1,t} \\ N_{a^+,t} \end{pmatrix} = \begin{pmatrix} 0 & p\phi_1 & \dots & p\phi_1 & p\phi_1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

- $N_{r,t}$, $1 \le r \le a-1$ and $N_{a^+,t}$ denote, numbers of female birds aged r-years and greater than (a-1)-years at time t
- the $\{\epsilon_{i,t}\}$ denote process errors.

Modelling process errors

Introduction

- The process variances are not free parameters, to be estimated.
- They have a particular structure resulting from the modelling.
- Survival may be binomial and recruitment Poisson.
- Thus corresponding to Equation 2, taking a = 4 for herons, we have

$$Var(\epsilon_{1,t}) = p\phi_{1}(N_{2,t-1} + N_{3,t-1} + N_{4^{+},t-1})$$

$$Var(\epsilon_{2,t}) = \phi_{2}(1 - \phi_{2})N_{1,t-1}$$

$$Var(\epsilon_{3,t}) = \phi_{3}(1 - \phi_{3})N_{2,t-1}$$

$$Var(\epsilon_{4^{+},t}) = \phi_{4^{+}}(1 - \phi_{4^{+}})(N_{3,t-1} + N_{4^{+},t-1}).$$
(3)

• We make normal approximations for the Poisson and binomial.

Observation equation

- Grey herons are not thought to skip breeding in general, and we equate counting nests to counting breeding females. Breeding starts at age 1.
- The observed counts, $\{y_t\}$, are then given by the corresponding observation equation

$$y_t = (0, 1, ..., 1)(N_{1,t}, N_{2,t}, ..., N_{a^+,t})' + \eta_t,$$
 (4)

- The $\{\eta_t\}$ are given a normal distribution (others are possible).
- We have a state-space model.
- We are then able to use the Kalman filter to approximate the likelihood for census data.

Recursions

In general, we write

$$\mathbf{N}_t = \mathbf{\Lambda}_t \mathbf{N}_{t-1} + \boldsymbol{\eta}_t$$
 $\mathbf{Y}_t = \mathbf{Z}_t \mathbf{N}_t + \boldsymbol{\epsilon}_t.$

We assume $\epsilon_t \sim N(0, \mathbf{Q}_t)$ and $\eta_t \sim N(0, \mathbf{H}_t)$

- The Kalman filter is a recursive procedure to construct the likelihood function for appropriate state-space models.
- We write $\mathbf{a}_t = \mathbb{E}(\mathbf{N}_t)$ and $\mathbf{P}_t = \text{Var}(\mathbf{N}_t)$.
- For starting values **a**₁ and **P**₁, the Kalman filter recursions are defined by

$$\mathbf{v}_{t} = \mathbf{y}_{t} - \mathbf{Z}_{t} \mathbf{a}_{t}$$

$$\mathbf{F}_{t} = \mathbf{Z}_{t} \mathbf{P}_{t} \mathbf{Z}_{t}' + \mathbf{H}_{t}$$

$$\mathbf{G}_{t} = \mathbf{\Lambda}_{t} \mathbf{P}_{t} \mathbf{Z}_{t}' \mathbf{F}_{t}^{-1}$$

$$\mathbf{a}_{t+1} = \mathbf{\Lambda}_{t} \mathbf{a}_{t} + \mathbf{G}_{t} \mathbf{v}_{t}$$

$$\mathbf{L}_{t} = \mathbf{\Lambda}_{t} - \mathbf{G}_{t} \mathbf{Z}_{t}$$

$$\mathbf{P}_{t+1} = \mathbf{\Lambda}_{t} \mathbf{P}_{t} \mathbf{L}_{t}' + \mathbf{Q}_{t}.$$
(5)

Kalman filter likelihood

Following the Kalman filter we construct a likelihood function for the unknown parameters, θ , conditional on the observed data y_1, \dots, y_T .

 Assuming that the initial state vector α₁ ~ N(a₁, P₁), the log-likelihood function is defined by

$$\log \mathrm{L}_{\mathrm{c}}(oldsymbol{ heta}|\mathbf{y}) = -rac{7}{2}\log 2\pi - rac{1}{2}\sum_{t=1}^{T}\left(\log|\mathbf{F}_{t}| + \mathbf{v}_{t}'\mathbf{F}_{t}^{-1}\mathbf{v}_{t}
ight).$$

- The values of v_t and F_t are automatically calculated through the implementation of the Kalman filter on the last slide.
- This is the prediction-error decomposition likelihood due to the interpretation of v_t and F_t.

Bringing it all together

- Models for the two data sets share common survival probabilities, and integrated population modelling exploits this feature.
- The two likelihoods are formed for the component data sets and the product is maximised to produce maximum-likelihood estimates for the complete set of model parameters.
- Important assumption of independence.

$$\log(L_j) = \log(L_r) + \log(L_c), \tag{6}$$

where L_j denotes the joint likelihood, L_r denotes the likelihood for the ring-recovery data, given in Equation 1, and L_c denotes the likelihood for the census data.

Further features of IPM

- The model for the census data includes a productivity parameter, p,
- although there is not a data set providing direct information on productivity, as a
 consequence of integrated population modelling we can estimate this parameter,
 along with an estimate of its standard error.
- For Grey herons we obtain the estimate of productivity, $\hat{p} = 0.96(0.07)$.
- Similar approaches are to be found in fisheries stock assessment models, where there may be differential weighting of the components in the joint log likelihood.

Formation of capture-recapture likelihood

- It is often the case that the capture-recapture likelihood is obtained from using a stand-alone computer package.
- It is difficult then to combine with other likelihoods to conduct a joint analysis.
- We can resolve this issue by approximating the capture-recapture likelihood near the maximum.

Multivariate normal approximation to capture-recapture-recovery likelihoods

- Following the use of a computer package, we can approximate the likelihood at the maximum by means of a multivariate normal distribution.
- The multivariate normal approximation is defined by

$$2 \log L_r(\theta) = \operatorname{constant} - (\hat{\theta} - \theta)' \hat{\Sigma}^{-1} (\hat{\theta} - \theta)$$

where $\hat{\theta}$ are the maximum-likelihood estimates and $\hat{\Sigma}$ is the estimated variance-covariance matrix.

• We then use the approximation in Equation 6 to form the combined likelihood:

$$\log(L_i) = \log(L_r) + \log(L_c),$$

Introduction

Examination of the MVN approximation: multistate model

Introduction IPM New research 00000000

Bayesian approach: no need for Kalman filter etc. DAG

See Chapter 11 of Kéry and Schaub (2012), Bayesian population analysis using WinBUGS: a hierarchical perspective.

Advantages of IPMs

- Integrate the results from different surveys into a single analysis.
- Lead to better descriptions and understanding of population dynamics.
- The approach is quite general, eg., count data may be described using N-mixture models and stopover models. Capture-recapture models may be of different types.
- Productivity models are often, though not always, quite simple.
- Allow estimation of unknown parameters, sometimes with complex structure. For example, productivity, migration
- Allow the coherent estimation of standard errors
- Increased precision, which is useful for conservation applications.
- Extend readily to more complex situations, involving
 - several species (Lahoz-Monfort in preparation)
 - different animal types, eg., sex, age, breeding
 - different locations

n Cap-recap Ecological time series Kalman filter IPM extensions New research Summary References
00000 000000 00 0000000 0 0000000 0

Current applications of IPM: batch marking; stop-over model; dynamic model

Work with Emily Dennis, Marc Kéry, Takis Besbeas, Laura Cowan, Eleni Matechou....

Northern lapwing: Vanellus vanellus

Lapwing decline: modelling a decline in productivity

- Decline in population size is either due to a fall in productivity
- or a fall in survival
- the former is thought to be the case.

Grey heron: Ardea cinerea

A threshold model: An illustration of adding complexity to modelling productivity.

- We can model productivity in terms of thresholds.
- Eg: instead of log $\rho_t = \kappa_0 + \kappa_1 y_t$, we might set

$$\log \rho_t = \begin{cases} \nu_0 + \nu_1 & \text{if } y_t < \tau, \\ \nu_0 & \text{if } y_t \ge \tau. \end{cases}$$

Movement between sites: multi-site model

Transition between different states: multi-state model

Issues remaining

Several issues remain for investigation

- Is variance estimation correct?
- When the control of the control o
- Mow do we choose between models?
- How important is the requirement of independent data from different surveys?
- Parameter redundancy: what parameters can we estimate?
- Might IPM be inappropriate? Eg: combination of citizen-science data with transect data. See Pagel et al Methods in Ecology and Evolution (2014).
- How might one check for consistency between different data sets? See Popescu et al Ecology and Evolution, (2014)

1. Variance estimation

- Profile log-likelihoods when there is over dispersion, indexed by θ
- Observation variance may be estimated on a boundary to the parameter space
- Shown here for models of increasing complexity for heron data
- We consider ways of dealing with that.

Pseudo replication

- Replicated time series provide good estimates of observation variance
- However it is hard to obtain such replication
- Differenced ecological time series have little structure
- We can obtain pseudo replicates by randomly sampling from neighbouring observations

Penalised likelihood and plug-in method

• We can penalise values of $\sigma = 0$:

$$\log(\mathbf{L}_i^p) = \log(\mathbf{L}_r) + \log(\mathbf{L}_c) + \alpha \log(\sigma).$$

- However the penalty makes little difference to parameters of interest
- Can estimate σ from a spline fit, and use that estimate
- A resulting plug-in method also does well in simulations
- There is apparently little effect on estimated standard errors

2. Model selection using AIC: determining the number of age classes

- AIC = $-2 \log L + kd$, where d denotes the number of parameters, and k = 2
- We vary k in a simulation study
- solid line = MRR only
- dashed line = IPM
- We see that using k = 2, MRR is better than IPM?
- AIC needs a larger penalty, k > 2
- We find that step-up likelihood-ratio tests perform better

Introduction

A real example: Modelling senescence in ibex, *Capra ibex*

- Step-up likelihood-ratio tests combined with step-down approach
- Comparison with using Gompertz curve for describing senescence
- Best not to use Gompertz in this case.

Introduction Cap-recap Ecological time series Kalman filter IPM extensions **New research** Summary References 000 00000 00000 0000 00000 0 0

3. Goodness of fit

- model check using classical version of Bayesian p-values
- We use asymptotic multivariate normal distribution of maximum-likelihood estimators.
- For each simulated value we construct discrepancy values with real data and the model and a simulated data set and the model
- we use different discrepancy measures for capture-recapture data (Freeman-Tukey) and time-series (two measures used)
- p_c values obtained are: 0.39, 0.72, 0.52.
- We then use simulation to check these values.

3. Goodness of fit: use of calibrated simulation

- We use calibrated simulation to check the goodness-of-fit results
- This is done for a variety of models, for lapwing data
- We find that the p_c-values obtained are in agreement with the appropriate/best model

Summary New research

Summary

- Integrated population modelling is now a standard procedure in statistical ecology
- There are many examples of its use, in a variety of contexts
- Important features of the approach are still being elucidated.

References

- Besbeas et al (2002) Biometrics.
- Besbeas et al (2015) Technical Report.
- Besbeas and Morgan (2014) Methods in Ecology & Evolution.
- Besbeas and Morgan (2016) AiSA, under review.
- Fournier and Archibald 1982) Can. J. Fish Aquat. Sci..
- Kéry and Schaub (2012) Bayesian Population Analysis using WinBUGS: a hierarchical perspective, Ac. Press.
- Lahoz-Monfort et al (2016) Technical Report.
- McCrea and King (2016) In preparation.
- McCrea and Morgan (2014) Analysis of capture-recapture data, CRC Chapman & Hall, Boca Raton.
- Maunder and Punt (2013) Fisheries Research.
- Newman et al (2014) Modelling Population Dynamics, Springer.
- Schaub and Abadi (2011) J. Ornithology.

Many processes are state-space models: eg CJS

- Here x(i,t), $i=1,\ldots,n$, $t=1,\ldots,T$ are Bernoulli indicator random variables for the elements of life histories obtained on n individuals, describing whether or not an individual is alive, when x(i,t)=1, or dead, when x(i,t)=0.
- ullet The state process is given solely in terms of survival. For the i^{th} individual we have

$$x(i,t)|x(i,t-1) \sim \text{Bernoulli}(x(i,t-1)\phi_{t-1})$$

The observation equation is then given by

$$y(i, t)|x(i, t) \sim \text{Bernoulli}(p_t x(i, t))$$

where the capture probability is p_t .

ullet Therefore the observed capture history for the i^{th} individual is given by $\{y(i,t)\}_{t=f,\cdot}^T$

Smoothing

- The filtering algorithm evaluates the expected value of the state vector α_t conditional on the information available at time t, i.e. $\mathbb{E}(\alpha_t | \mathbf{y}_1, \dots, \mathbf{y}_t)$.
- The next step of smoothing determines the expected value of α_t conditional on all available data, i.e. $\mathbb{E}(\alpha_t | \mathbf{y}_1, \dots, \mathbf{y}_T)$.
- The most appropriate smoothing algorithm is fixed-interval smoothing. The fixed-interval smoothing algorithm commences with the final estimates a_T and P_T and iterates backwards.
- The recursions are defined by:

$$\mathbf{a}_{t|T} = \mathbf{a}_t + \mathbf{P}_t^* (\mathbf{a}_{t+1|T} - \mathbf{\Lambda}_{t+1} \mathbf{a}_t)$$

and

$$P_{t|T} = P_t + P_t^* (P_{t+1|T} - P_{t+1|t}) P_t^{'*}$$

where $\mathbf{P}_t^* = \mathbf{P}_t \mathbf{\Lambda}_{t+1}' \mathbf{P}_{t+1|t}^{-1}$ for $t = T - 1, \dots, 1$ with $\mathbf{a}_{T|T} = \mathbf{a}_T$ and $\mathbf{P}_{T|T} = \mathbf{P}_T$. Computationally, this is a simple step of programming and just requires that α_t and \mathbf{P}_t are stored for all values of t.