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Outline

@ Introduction

@ Capture-recapture

@ Modelling ecological time series

@ Kalman filter

@ Integrated Population Modelling; not Integral Projection Modelling
@ lllustrative results

@ Extensions

@ New research and discussion
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Workshop Bayesian integrated population modelling (IPM) using BUGS
and JAGS

Michael Schaub, Marc Kéry and David Koons
25 - 29 July 2016
Utah State University, Logan,

Integrated population models (IPMs) represent the powerful combination, in a
single Leslie-type of model, of different data sources that are informative about the
dynamics of an animal population

Typical IPMs combine one or more time-series of counts with another data set that
is directly informative about survival probabilities, such as ring-recovery or
capture-recapture.

@ However, many other sources of demographic information may also be envisioned.
@ Currently, for non-statisticians the only practical manner to develop and fit an IPM

is using BUGS software (WinBUGS, OpenBUGS, JAGS).
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Ringing wild birds

@ Birds are given unique marks
@ They are then observed later, dead or alive
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@ Rings take different forms, and
birds may be given more than
one: colour for resighting and
metal for dead recovery
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Examples for identification of wild animals
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Cormorant ring-recovery data

Number Number Recovered in Year (-1983) Never

Released |1 2 3 4 5 6 7 8 9 10 | Recovered
30 i 1 1 1 0 0 0 1 0 O 25
147 10 1 1 0 3 1 2 0 1 128
128 3 1.0 1 3 1 A1 0 118
199 6 3 0 3 0 4 A1 182
291 7 4 5 4 3 0 268
201 5 1 1 4 0 190
179 3 0 2 O 174
242 3 5 0 234
173 2 0 171
45 2 43

Cormorant ring-recovery data for breeding individuals released from 1983-1991.
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Product multinomial likelihood

Making use of the assumption of independence of individuals between cohorts, the
data can be modelled by a product of multinomials, and the log-likelihood is given by

TOT T
log(L;) = constant + Z Z d;jlog(pi,) + Z uilog(qi) (1)
i=1 j=it1 i=1

@ In a T-year study, d;; individuals are reported dead at time £, from a cohort of R;
individuals ringed at time t;, and the number of animals that are not recovered
from the /" cohort are denoted by u;, so that u; = R; — > dij-

@ The probability corresponding to the d;; is denoted by p;;, and we write
g = 1 —Z/’pi,/',l':‘l,...,T.

@ We let ¢; denote the annual survival probability of individuals aged
i=1,...,a—1,a", corresponding to a age groups, and \ denote the probability
that an individual which dies is reported dead.

@ The p;; are modelled in terms of the annual survival probabilities. For example, for
j<at,pij=¢1...6i—i(1 — dj—it1)\. Probabilities may be time dependent in
general.
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Parameter estimates for a time-dependent model

Parameter | MLE SE Parameter | MLE SE
o 0.86 0.139 o6 0.93 0.042
P2 0.71 0.134 o7 0.92 0.047
b3 0.90 0.063 o 0.95 0.031
o 0.90 0.059 o9 0.92 0.049
s 0.93 0.040 d10 0.98 0.012
A 0.22 0.096

@ Maximum-likelihood estimates from a model with time-dependent survival
probabilities and constant recovery probability fitted to the cormorant ring-recovery
data.

@ SE denotes standard error, obtained from inverting the Hessian at the
maximum-likelihood estimates. Here t; represents 1983.
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Grey heron: Ardea cinerea

The effect of cold winters
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Grey heron

The effect of cold winters, measured by frost days
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Transition equation

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ni ¢ ¢ 0 ... 0 0:0 Ni -1 €1t
N ¢ : I\ €2t
= s (2)
Naf1,t 3 Na—1,171 €a—1,t
Na*,t : Na+,171 €at,t

0 0 ... ¢aq 0§O

0 0 ... 0 ¢uids

@ N i, 1 <r<a-—1and N, denote, numbers of female birds aged r-years and
greater than (a — 1)-years at time t
@ the {¢; {} denote process errors.
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Modelling process errors

@ The process variances are not free parameters, to be estimated.

@ They have a particular structure resulting from the modelling.

@ Survival may be binomial and recruitment Poisson.

@ Thus corresponding to Equation 2, taking a = 4 for herons, we have

Var(eq,t) = pd1(Na,t—1 + Nat—1 + Ny+ 1—1)
Var(ez,) = ¢2(1 — d2)Ni -1
Var(es,r) = ¢3(1 — ¢3)Na,i—1
Var(eg+ 1) = ¢a+ (1 — @ar )(Najt—1 + Na+ 1) (3)
@ We make normal approximations for the Poisson and binomial.
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Observation equation

@ Grey herons are not thought to skip breeding in general, and we equate counting
nests to counting breeding females. Breeding starts at age 1.

@ The observed counts, {y:}, are then given by the corresponding observation
equation
V= (07 1 3oy 1)(N1,i7 N2J7 ceey Na*,t)l + T, (4)
@ The {n:} are given a normal distribution (others are possible).
@ We have a state-space model.

@ We are then able to use the Kalman filter to approximate the likelihood for census
data.
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Recursions

In general, we write
N: = ANy +
Y{ = ZtNt + €.
We assume €; ~ N(0,Q;) and n; ~ N(0, H;)

@ The Kalman filter is a recursive procedure to construct the likelihood function for
appropriate state-space models.

@ We write a; = E(N;) and P; = Var(N;).
@ For starting values a; and P+, the Kalman filter recursions are defined by

Vi =Yt — Zia;

Fi = ZP:Z; + H;

G: = AP.ZF,'
ar 1 = Na + Govy (5)

L: = A — GiZ;

Py = AP:iL; + Q.
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Kalman filter likelihood

Following the Kalman filter we construct a likelihood function for the unknown
parameters, 6, conditional on the observed data y1,--- ,yr.

@ Assuming that the initial state vector ay ~ N(a, P1), the log-likelihood function is
defined by

T 1 « .
logLe(8ly) = — log2r — 5 > (Iog IFi| + ViF; ‘v,) .
t=1

@ The values of v; and F; are automatically calculated through the implementation of
the Kalman filter on the last slide.

@ This is the prediction-error decomposition likelihood due to the interpretation of v;
and F;.
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Bringing it all together

@ Models for the two data sets share common survival probabilities, and integrated
population modelling exploits this feature.

@ The two likelihoods are formed for the component data sets and the product is
maximised to produce maximume-likelihood estimates for the complete set of
model parameters.

@ Important assumption of independence.

log(L;) = log(L,) + log(Lc), (6)

where L; denotes the joint likelihood, L, denotes the likelihood for the ring-recovery
data, given in Equation 1, and L. denotes the likelihood for the census data.
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Further features of IPM

@ The model for the census data includes a productivity parameter, p,

@ although there is not a data set providing direct information on productivity, as a
consequence of integrated population modelling we can estimate this parameter,
along with an estimate of its standard error.

@ For Grey herons we obtain the estimate of productivity, p = 0.96(0.07).

@ Similar approaches are to be found in fisheries stock assessment models, where
there may be differential weighting of the components in the joint log likelihood.
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Formation of capture-recapture likelihood

@ It is often the case that the capture-recapture likelihood is obtained from using a
stand-alone computer package.

@ It is difficult then to combine with other likelihoods to conduct a joint analysis.

@ We can resolve this issue by approximating the capture-recapture likelihood near
the maximum.
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Multivariate normal approximation to capture-recapture-recovery
likelihoods

@ Following the use of a computer package, we can approximate the likelihood at the
maximum by means of a multivariate normal distribution.

@ The multivariate normal approximation is defined by

2logL/(8) = constant — (6 — O)I)A:_1 (6 —0)

where 8 are the maximum-likelihood estimates and ¥ is the estimated
variance-covariance matrix.

@ We then use the approximation in Equation 6 to form the combined likelihood:

log(L;) = log(Lr) + log(Le),
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= Exact likelihood
' + MVN approximation
= = = Diagonal MVN approximation
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See Chapter 11 of Kéry and Schaub (2012), Bayesian population analysis using
WinBUGS: a hierarchical perspective.
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Advantages of IPMs

@ Integrate the results from different surveys into a single analysis.

@ Lead to better descriptions and understanding of population dynamics.

@ The approach is quite general, eg., count data may be described using N-mixture
models and stopover models. Capture-recapture models may be of different types.

@ Productivity models are often, though not always, quite simple.

@ Allow estimation of unknown parameters, sometimes with complex structure. For
example, productivity, migration

@ Allow the coherent estimation of standard errors

@ Increased precision, which is useful for conservation applications.

@ Extend readily to more complex situations, involving

o several species (Lahoz-Monfort in preparation)
o different animal types, eg., sex, age, breeding
o different locations
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Current applications of IPM: batch marking; stop-over model; dynamic
model

Work with Emily Dennis, Marc Kéry, Takis Besbeas, Laura Cowan, Eleni Matechou....

%
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Northern lapwing: Vanellus vanellus

Lapwing decline: modelling a decline in productivity

S g @ Decline in population size is
° s either due to a fall in
3 productivity
T @ or afall in survival
g @ the former is thought to be the
case.
% T T T T T T T T

1965 1970 1975 1980 1985 1990 1995 2000
Year
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Grey heron: Ardea cinerea

A threshold model: An illustration of adding complexity to modelling productivity.

16 8000

@ We can model productivity in terms of
thresholds.

@ Eg: instead of log p: = ko + K1Y, We
might set

6000

productivity
census

w+ur ity <,
lo = °
90t 120 if Vi >T.

<4000

L L L L L L L 2000
1920 1930 1940 1950 1960 1970 1980 1990 2000
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Movement between sites: multi-site model

oo
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Transition between different states: multi-state model

N, N, N, B, B, B, D AE
N, a(1)
N a(2+)
N, a(1) [ Natal Fidelity
N, a(24) [ Natal Movement
N; a(1
elt) [ Breeder Fidelity
Ntz [l Breeder M
[] Recruitment
B,
[[] Non-Maturation
B, [] Non-Breeder Emigration
[] Breeder Emigration
B, [l Permanent Emigration
I:‘ Death
D [] Transition set to zero
" .

Integrated Populati
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Issues remaining

Several issues remain for investigation
@ Is variance estimation correct?
© How do we check for goodness of fit?
© How do we choose between models?
© How important is the requirement of independent data from different surveys?
© Parameter redundancy: what parameters can we estimate?

© Might IPM be inappropriate? Eg: combination of citizen-science data with transect
data. See Pagel et al Methods in Ecology and Evolution (2014).

@ How might one check for consistency between different data sets? See Popescu
et al Ecology and Evolution, (2014)
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. Variance estimation

Profile log-likelihoods when there is over ’
dispersion, indexed by /\

= 01 ‘%3&0 = 01
@ Observation variance may be estimated T, X
y 0. 05% Dj&\) 0.05 \xsg%‘ "

on a boundary to the parameter space

@ Shown here for models of increasing o g
complexity for heron data 022 0z
@ We consider ways of dealing with that.
£ 0,1\ = 01
0.05 ;5939 3 0.05° Q
o 0

100 200 300 400 500 100 200 300 400 500
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@ Replicated time series provide good
estimates of observation variance

@ However it is hard to obtain such
replication

reoee o om0 ™ @ Differenced ecological time series have
little structure

@ We can obtain pseudo replicates by
randomly sampling from neighbouring
observations

6000

5000

census

4000

3000

1920 1940 1960 1980 2000 1920 1940 1960 1980 2000
year year
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-0.01 — 06 — 0 ]
o[ B 05 1 -0tf— . _ A
I e o ...t e Wecan penalise values of o = 0 :
—08f 008~ - \ o8| 003 o
040 20 30 % 10 20 w0 %270 20 30 % 10 20 0 lOg(L/) = IOg(Lr) + lOg(LC) + OZ]Og(O').
e oo I I e I @ However the penalty makes little
— 0 ] . .
' B T R N o[ <23 difference to parameters of interest
-0.03 12 . . .
- — — %~ @ Can estimate o from a spline fit, and use
%0 20 30 "o 10 20 30 % 10 20 30 that eStImate
0.2 . .
N @ A resulting plug-in method also does well
0 . . .
I — in simulations
-0.2 i
@ There is apparently little effect on

0 10 20 30
a

estimated standard errors
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2. Model selection using AlIC: determining the number of age classes

sigma=10 sigma=12

0. === 1

o 0 @ AIC = —2logL + kd, where d denotes
for R the number of parameters, and k = 2
8 oo goo| @ We vary k in a simulation study

0.5 1
o o4l @ solid line = MRR only
04
0 0 2

« ° ° @ dashedline = IPM

@ We see that using k = 2, MRR is better
than IPM?

@ AIC needs a larger penalty, k > 2

/ @ We find that step-up likelihood-ratio
tests perform better
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A real example: Modelling senescence in ibex, Capra ibex

4(2..10114) §(267:10,114)
1 1 avaag
[ERARFEE: 1238
FEEEEEEEE £ 09| 333838388
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i § 04
02
0} + 2000000000000 0 « - = 50000000000000 8 « -
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0(26.G17+) 4(26.7:10,G114))
1 LYYV VY

survival probabilty

&

2

"

+ 2000000000000 @ - -

DAGStat

5 10 15 20
age

Integrated Population Modelling

@ Step-up likelihood-ratio tests combined
with step-down approach

@ Comparison with using Gompertz curve
for describing senescence

@ Best not to use Gompertz in this case.
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3. Goodness of fit

H

O_MPE(heta i)

DAGStat Integrated Population Modelling

model check using classical version of
Bayesian p-values

We use asymptotic multivariate normal
distribution of maximum-likelihood
estimators.

For each simulated value we construct
discrepancy values with real data and
the model and a simulated data set and
the model

we use different discrepancy measures
for capture-recapture data
(Freeman-Tukey) and time-series (two
measures used)

@ p. values obtained are: 0.39, 0.72, 0.52.
@ We then use simulation to check these

values.

15 March, 2016 35/40



New research

0O000000e

3. Goodness of fit: use of calibrated simulation

@ We use calibrated simulation to check

the goodness-of-fit results

@ This is done for a variety of models, for
lapwing data

0 w0 20 30 40 S0

@ We find that the p.-values obtained are
in agreement with the appropriate/best
model

g
= o L
MRR-FT Cansus MAPE  Gonsus-MPE MAR-FT Gensus MAPE  Gensts-MPE
©
g = = g e ]
s _ g = —
MRRFT  Gorsus VAPE Gorsus-MPE MARCFT ensus MAPE  Gensus-MPE

DAGStat Integrated Population Modelling
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Summary

@ Integrated population modelling is now a standard procedure in statistical ecology
@ There are many examples of its use, in a variety of contexts

@ Important features of the approach are still being elucidated.
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Many processes are state-space models: eg CJS

@ Here x(i,t),i=1,...,n,t=1,..., T are Bernoulli indicator random variables for
the elements of life histories obtained on n individuals, describing whether or not
an individual is alive, when x(i, t) = 1, or dead, when x(i, t) = 0.

@ The state process is given solely in terms of survival. For the i individual we have
x(i, t)|x(i,t — 1) ~ Bernoulli(x(i,t — 1)ps—1)
@ The observation equation is then given by
y(i, t)|x(i, t) ~ Bernoulli(p:x(i, t))

where the capture probability is p;.
@ Therefore the observed capture history for the i*” individual is given by {y(i,)}_.
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Smoothing
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The filtering algorithm evaluates the expected value of the state vector o
conditional on the information available at time ¢, i.e. E(ou|y1,...,Y:).

The next step of smoothing determines the expected value of «; conditional on all
available data, i.e. E(a¢|y1,...,Y7).

The most appropriate smoothing algorithm is fixed-interval smoothing. The
fixed-interval smoothing algorithm commences with the final estimates ar and Pt
and iterates backwards.

The recursions are defined by:

ayr = ar + Pi(api1 7 — A1)
and

Pyr = Pt + P (Proyjr — Prt )Py
where P; = P/A;, P,

1]t fort=T — 1,...,1 with arT =ar and PT\T =Pr.
Computationally, this is a simple step of programming and just requires that o
and P; are stored for all values of .
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