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Motivation

Abundance indices are highly important for the monitoring and conservation of
various taxa, including insects such as butterflies.

Over a ten-year period, three-quarters of UK butterfly species have shown
declines in distribution, population, or both (Fox et al., 2011).

Butterflies are the most widely monitored invertebrate taxon and are recognised
as valuable indicators of biodiversity (UK Biodiversity Action Plan).

We develop a method that is both efficient and general for estimating relative
abundance.
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UK Butterfly Monitoring Scheme (UKBMS)

Wide-scale system of ∼1000 weekly
transect walks (Pollard and Yates,
1993)

Sites are self-selected but monitored
intensively (up to 26 counts per year)

Began in 1976 with 34 sites

Assess population trends

Biodiversity indicators
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UK Butterfly Monitoring Scheme (UKBMS)

Wide-scale system of ∼1000 weekly
transect walks (Pollard and Yates,
1993)

Sites are self-selected but monitored
intensively (up to 26 counts per year)

Began in 1976 with 34 sites

Assess population trends

Biodiversity indicators

Relative abundance index for Wall Brown
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UKBMS data
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Generalised additive models (GAMs)

Fit non-parametric curves to estimate
a common flight period for each year
(Dennis et al., 2013).

Derive an index from fitting a
regression model with site and year as
predictors, offsetting for seasonal
effects.

Disadvantage: slow - can take weeks
to derive a bootstrap interval for a
single species.
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Mixture models for bivoltine butterflies
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Descriptive mixture model for bivoltine butterflies

We propose a parametric alternative to GAMs.

Consider a Poisson likelihood, with expectation λi,j = Niai,j , where,

ai,j = wi
1

σi,1
√

2π
exp

{
− (ti,j − µi,1)

2

2σ2
i,2

}
+ (1 − wi)

1
σi,2

√
2π

exp

{
− (ti,j − µi,2)

2

2σ2
i,2

}
.

Then

L(N,w,µ,σ; y) =
R∏

i=1

T∏
j=1

exp(−Niai,j)(Niai,j)
yi,j

yi,j !
.

Parameters to optimise: R site parameters, as well as parameters within ai,j .
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General formulation for a concentrated likelihood

For a Poisson model with λi,j = Niai,j , for a given site i ,

ℓ = Log(L) = −Ni

T∑
j=1

ai,j + log(Ni)
T∑

j=1

yi,j +
T∑

j=1

yi,j log(ai,j)−
T∑

j=1

log(yi,j !).

Differentiating ℓ with respect to Ni and equating to zero, we find that

Ni =

∑T
j=1 yi,j∑T
j=1 ai,j

.

Hence, we can substitute for Ni and simply optimize the concentrated Poisson

likelihood, with λi,j = ai,j

∑T
j=1 yi,j∑T
j=1 ai,j

.
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General formulation for a concentrated likelihood

This significantly reduces the number of parameters leading to large
improvements in computation time.

For a simple mixture model, the reduction is from R + 4 parameters to just 4
parameters.

The ai,j are general - mixture of Normal distributions, spline, stopover model
formulation.

The approach also applies to a negative-binomial or zero-inflated Poisson and
negative-binomial models, each incorporating an additional parameter.
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Stopover models for butterfly data (Matechou et al., 2014)

Assuming a Poisson model and a closed super-population size

L(N,β,ϕ; y) =
R∏

i=1

T∏
j=1

exp(−λi,j)λ
yi,j
i,j

yi,j !
, where λi,j = Ni

{ j∑
b=1

βi,b−1

( j−1∏
k=b

ϕk,a

)}
.

For example if j = 3, then λi,3 = Ni(βi,0ϕ1,1ϕ2,2 + βi,1ϕ2,1 + βi,2).

Arrival parameters, β, are modelled using a mixture of normal distributions.
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Comparison of the stopover and descriptive mixture model

a) Stopover model n = 5
Species Log(L) AIC w µ1 µ2 σ D ϕ

Holly Blue -2601.1 5212.1 0.26 7.24 18.90 2.10 1.42 0.32
Small Blue -2348.1 4706.3 0.77 9.56 17.32 1.47 1.30 0.16
Wall Brown -2183.0 4376.0 0.38 7.94 18.77 1.26 1.25 0.48
Small White -4555.0 9119.9 0.14 5.55 16.52 1.84 2.44 0.68
Common Blue -8978.5 17967.1 0.26 8.69 17.79 1.26 5.34 0.51

b) Descriptive mixture model n = 4
Species Log(L) AIC w µ1 µ2 σ D
Holly Blue -2601.0 5210.0 0.26 8.19 19.83 2.26 1.63
Small Blue -2349.0 4706.1 0.77 10.24 17.98 1.57 1.72
Wall Brown -2220.6 4449.3 0.38 9.24 20.05 1.78 1.54
Small White -4639.8 9287.7 0.13 7.51 18.76 2.70 3.03
Common Blue -9336.3 18680.5 0.25 10.04 19.22 1.84 6.70
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Application to UKBMS data for a single year

a) Poisson n = 4
Species Log(L) AIC D w µ1 µd σ

Holly Blue -2601.0 5210.0 1.63 0.26 8.19 11.64 2.26
Small Blue -2349.0 4706.1 1.72 0.77 10.24 7.74 1.57
Wall Brown -2220.6 4449.3 1.54 0.38 9.24 10.81 1.78
Small White -4639.8 9287.7 3.03 0.13 7.51 11.26 2.70
Common Blue -9336.3 18680.5 6.70 0.25 10.04 9.18 1.84

b) Negative-binomial n = 5
Species Log(L) AIC D w µ1 µd σ r
Holly Blue -2207.7 4425.4 0.62 0.28 7.78 11.88 2.24 0.83
Small Blue -1565.4 3140.8 0.48 0.71 10.30 7.93 1.56 0.63
Wall Brown -1813.8 3637.5 0.52 0.36 9.43 10.75 1.94 0.62
Small White -3443.9 6897.9 1.32 0.14 7.63 11.45 2.63 1.11
Common Blue -4490.9 8991.7 1.54 0.25 10.75 8.63 2.00 0.76
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Timing comparison for the concentrated likelihood

Comparison of efficiency for the descriptive mixture model with and without the
concentrated likelihood approach.

Species Poisson Negative-binomial
n = 104 n = 4 n = 105 n = 5

Holly Blue 4.9m 0.27s 6.9m 0.70s
Small Blue 1.9m 0.45s 3.6m 0.86s
Wall Brown 5.2m 0.29s 6.3m 0.83s
Small White 11.2m 0.44s 22.4m 1.36s
Common Blue 15.8m 0.35s 10.6m 1.22s
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Goodness of fit
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Covariate dependence
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Multi-year modelling

We use the average of the site parameter estimates, N̂i , as an index of abundance
in a given year.

Ĝ =
1
R

R∑
i=1

N̂i =
1
R

R∑
i=1

∑T
j=1 yi,j∑T
i=1 âi,j

Hence to obtain an index, the mixture model is fitted separately to data for each
year and Ĝ then plotted against time.

Standard errors are calculated using a bootstrap.
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Comparison of indices
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Timing comparison for a single run

Comparison of efficiency and accuracy for the GAM and descriptive mixture model,
based on a single model run.

Species Time

GAM Mixture

Neg.-bin. Poisson
Holly Blue 9m 59s 14s
Small Blue 32m 22s 10s
Wall Brown 39m 56s 18s
Small White 23m 102s 25s
Common Blue 22m 63s 18s
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Timing and accuracy comparison

Comparison of efficiency and accuracy for the GAM and descriptive mixture model,
based on 100 bootstraps. The mixture model was fitted for five random starts for each
year and each bootstrap.

Species Time Mean CI width

GAM Mixture GAM Mixture

Neg.-bin. Poisson Neg.-bin. Poisson
Holly Blue 15h29m 10h22m 3h01m 0.862 0.639 0.648
Small Blue 53h12m 4h13m 2h05m 3.091 1.934 1.949
Wall Brown 64h59m 9h01m 3h10m 0.860 1.062 1.089
Small White 39h23m 12h11m 4h07m 0.998 0.960 0.969
Common Blue 37h42m 9h52m 3h27m 1.066 1.295 1.298
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Multi-year modelling - regressing parameters on year & northing
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Discussion

Development of the concentrated likelihood approach leads to significant
improvements in computation time.

Important for schemes such as the UKBMS with large-scale data.

Parametric models are flexible for linking parameters between years and
incorporating covariate dependence.

Benefit the study of changes in phenology and voltinism, e.g. due to climate change.

The ai,j can be any general function describing variation in counts over the
monitoring period.

Splines for direct comparison to GAM and species with complex seasonal patterns.
Stopover models (Matechou et al., 2014).

Wider applications for other scenarios and taxa e.g. migrant bird
populations.
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