BES/DICE Workshop, Canterbury 2014

Stopover Models

Rachel McCrea

Collaborative work with

Hannah Worthington, Ruth King, Eleni Matechou Richard Griffiths and Thomas Bregnballe

Overview

- Capture-recapture data
- Closed population models
- Open population models
- Stopover models
- Application 1: Great cormorants
- Application 2: Great crested newts

- Extensions and Current Work
- Software
- References

Capture-recapture data

- Capture-recapture data
 - **10010**
 - 11011
 - 00101
 - ..
- Data from marked animals
 - Population size

Closed population models

- Closed population: no immigration, emigration, death or births during the study
- p_t: probability an individual is captured at occasion t
- Capture-recapture data and probabilities
 - $\bullet 10010 \qquad p_1(1-p_2)(1-p_3)p_4(1-p_5)$
 - 11011 $p_1p_2(1-p_3)p_4p_5$
 - 00101 $(1-p_1)(1-p_2)p_3(1-p_4)p_5$

Closed population models

- Some individuals will not be captured at all during the study
- The encounter history for these individuals is given by
 - 00000 $(1-p_1)(1-p_2)(1-p_3)(1-p_4)(1-p_5)$
- It is the number of individuals who are never captured that we need to estimate to estimate in order to estimate the total population size.

Closed population models

Form a likelihood function as

$$L \propto \frac{N!}{(N-D)!} \prod_{i=1}^{D} \Pr(h_i) \times \Pr(h_0)^{N-D}$$

- h_i: observed encounter history for individual i
- h₀: encounter history of never captured
- N: population size
- D: observed number of individuals
- Maximise L, to obtain *maximum-likelihood* estimates of pt and N

- Studied population might not be closed, but still want to be able to estimate population size
- Jolly-Seber model
 - POPAN/Schwarz-Arnason formulation

00100

Entry time into the study population /

- Studied population might not be closed, but still want to be able to estimate population size
- Jolly-Seber model
 - POPAN/Schwarz-Arnason formulation

00100

Entry time into the study population /

- Studied population might not be closed, but still want to be able to estimate population size
- Jolly-Seber model
 - POPAN/Schwarz-Arnason formulation

00100

Entry time into the study population /

- Studied population might not be closed, but still want to be able to estimate population size
- Jolly-Seber model
 - POPAN/Schwarz-Arnason formulation

00100

Departure time out of the study population /

- Studied population might not be closed, but still want to be able to estimate population size
- Jolly-Seber model
 - POPAN/Schwarz-Arnason formulation

00100

Departure time out of the study population /

- Studied population might not be closed, but still want to be able to estimate population size
- Jolly-Seber model
 - POPAN/Schwarz-Arnason formulation

00100

Departure time out of the study population /

- If you assume the population is closed when it is not, the parameter estimates will be biased.
- Parameters for the Jolly-Seber model
 - N: population size
 - β_t : proportion of individuals first **available for** capture at occasion t+1, $\sum_{j=0}^{T-1} \beta_j$
 - pt: probability an individual is captured at occasion t
 - \$\overline{t}\$; probability an individual present in the study area at occasion t remains in the study area until occasion t+1

- When forming the probability of an observed encounter history we need to sum over possible entry and departure times.
 - Suppose individual is first captured at occasion f_i and last captured at occasion l_i
 - x_{ij}=1 if individual i is captured at occasion j, x_{ij}=0 otherwise

$$\Pr(h_i) = \sum_{b=1}^{f_i} \sum_{d=l_i}^T \beta_{b-1} \left(\prod_{j=b}^{d-1} \phi_j \right) (1 - \phi_d) \left\{ \prod_{j=b}^d p_j^{x_{ij}} (1 - p_j)^{1 - x_{ij}} \right\}$$

 Corresponding probability of an individual not captured during the study

$$\Pr(h_0) = \sum_{b=1}^T \sum_{d=1}^T \beta_{b-1} \left(\prod_{j=b}^{d-1} \phi_j \right) (1 - \phi_d) \left\{ \prod_{j=b}^d (1 - p_j) \right\}$$

$$L \propto \frac{N!}{(N-D)!} \prod_{i=1}^{D} \Pr(h_i) \times \Pr(h_0)^{N-D}$$

Stopover models

- Generalised version of the Jolly-Seber model
- Parameters are defined to be age-dependent
 - **age** corresponds to the time spent in the study area
 - arrival times and departure times are not independent

Stopover models

Parameters

- N: population size; this represents the total number of individuals who have been available for capture on at least one occasion
- β_t : proportion of individuals first **available for capture** at occasion t+1, $\sum_{j=0}^{T-1} \beta_j = 1$
- p_t(a): probability an individual which entered the study a occasions previously is captured at occasion t
- φ_t(a): probability an individual present in the study area at occasion t, which entered the study a occasions previously, remains in the study area until occasion t+1.

Stopover models

$$L \propto \frac{N!}{(N-D)!} \prod_{i=1}^{D} \Pr(h_i) \times \Pr(h_0)^{N-D}$$

$$\Pr(h_0) = \sum_{b=1}^T \sum_{d=b}^T \left(\beta_{b-1} \left\{ \prod_{j=b}^{d-1} \phi_j(a) \right\} \left\{ 1 - \phi_d(d-b+1) \right\} \left[\prod_{j=b}^d \{1 - p_j(a)\} \right] \right)$$

$$\Pr(h_i) = \sum_{b=1}^{f_i} \sum_{d=l_i}^T \left(\beta_{b-1} \left\{ \prod_{j=b}^{d-1} \phi_j(a) \right\} \{1 - \phi_d(d-b+1)\} \times \left[\prod_{j=b}^d p_j(a)^{x_{ij}} \{1 - p_j(a)\}^{1-x_{ij}} \right] \right),$$

Application 1: Great cormorants

- Colony Vorsø
- Daily visits are made to the cormorant colonies during the breeding season, data summarised as monthly captures
- Records are made of whether or not the cormorants successfully breed
 University of Kent

Application 1: Great cormorants

- 318 individuals
- 9 occasions monthly February-October

Application 1: Great cormorants

Model	AIC	∆AIC	np	MLE of (N-D)
N,β(t),φ(.),p(.)	1459.38	332.32	6	11.6
N,β(t),φ(t),p(.)	1127.97	0.91	14	1.8
N,β(t),φ(a),p(.)	1156.24	29.18	14	1.2
N,β(t),φ(a+t),p(.)	1127.06	0.00	22	1.4

- Field study site at the University of Kent
- Data collected by Professor Richard Griffiths, Durrell Institute of Conservation and Ecology
- Data collected weekly during breeding season (February June)

	week 1	week 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week 10	week 11	week 12	
Jake	1												
Phillip	1	1					1		1				
Oliver		1							1				
Jennifer		1					1	1	1			1	
Woody		1							1				
Antonio		1										1	
Daniel		1											
Terri		1	1				1	1	1			1	
Pierce		1				1			1	1		1	
Norman		1											
Edith		1				1		1	1			1	
Richard		1		1		1	1		1	1			
David		1						1			1		

• 2013 data – 53 individuals – 24 weeks

Model	AIC	∆AIC	np	MLE of (N-D)
N,β(t),φ(.),p(.)	687.29	107.82	14	11.0
N,β(t),φ(lt),p(.)	620.72	41.25	15	1.8
N,β(t),φ(t),p(.)	648.72	69.25	37	1.9
N,β(t),φ(a),p(.)	681.53	102.06	37	0.3
N,β(t),φ(la),p(.)	647.26	67.80	15	1.5
$N,\beta(t),\phi(la),p(t)$	585.24	5.77	38	1.3
$N,\beta(t),\phi(lt),p(t)$	579.47	0.00	38	1.3

Extensions and Current Research

- Integrating capture-recapture-resignating data and counts of unmarked birds at stopover sites
 - Matechou et al, (2013a)
- Estimating age-specific survival when age is unknown:
 - Capture-recapture data (Matechou et al, 2013)
 - Ring-recovery data (McCrea et al, 2013)
- Integrating multiple years of stopover data
 - Worthington et al, (2014)
- Multisite developments
- To keep up to date with current research developments see <u>www.rachelmccrea.co.uk</u>

Software

- HetAge: Shirley Pledger R code
 - http://homepages.ecs.vuw.ac.nz/~shirley/
- R code:
 - Matechou et al, 2013b
- MATLAB code
 - www.capturerecapture.co.uk
- POPAN Jolly-Seber model
 - Program Mark: <u>www.phidot.org</u>

References

- Matechou, Morgan, Pledger, Collazo and Lyons (2013a) Integrated analysis of capture-recapture-resignating data and counts of unmarked birds at stop-over sites. *Journal of Agricultural, Biological and Environmental Statistics.* 18, 120-135.
- Matechou (2010) Applications and extensions of capture-recapture stop-over models.
 PhD Thesis, University of Kent
- Matechou, Pledger, Efford, Morgan and Thomson (2013b) Estimating age-specific survival when age is unknown: open population capture-recapyture models with age structure and heterogeneity. *Methods in Ecology and Evolution.* 4, 654-664.
- McCrea and Morgan (2014) Analysis of capture-recapture data. Chapman and Hall/CRC Press. Chapter 8.
- Pledger, Efford, Pollock, Callazo and Lyons (2009) Stopover duration analysis with departure probability dependent on unknon time since arrival. *Environmental and Ecological Statistics*, **3**, 349-363.
- Schwarz and Arnason (1996) A general methodology for the analysis of capturerecapture experiments in open populations. *Biometrics*. 52, 860-873.
- Worthington, King, McCrea and Matechou (2014) An explicit likelihood framework for integrated stopover models. *University of Kent Technical Report. UKC/SMSAS/14/002*