MASSS Ecological Statistics

Program Mark and RMark: Capture-recapture models

R.S.McCrea and B.J.T.Morgan

Spring Term 2012

1 Introduction

The development of computer software capable of fitting MRR models has been a catalyst
in the research area and has sparked a wide range of applications of the models to numerous
data sets. Program Mark! was developed to provide a common programming environment for
the estimation of survival from marked animals. Prior to Mark no program easily combined
the estimation of survival from both live and dead encounters, nor allowed for the modelling
of capture and recapture probabilities in a general modelling framework for estimation of
population size in closed populations.

The RMark? library is a collection of R functions that can be used as an interface to
MARK for analysis of capture-recapture data. The library contains various functions that
import/export capture data, build capture-recapture models, run the FORTRAN program
MARK.EXE, and extract and display output. Program MARK has its own user interface;
however, model development can be rather time-consuming and error-prone because the
parameter structure and design matrix are created by hand. This interface in R was created
to use the formula and design matrix functions in R to ease model development and reduce

eIrors.

2 RMark

2.1 Installing RMark

1. Download and unzip the Program Mark folder from the MA888 module on moodle into
your bodiam directory Z:\.

2. Create an empty directory called MarkExample.

"White, G.C. and Burnham, K.P. (1999), Program Mark: survival estimation from populations of marked
animals, Bird Study 46, S120-S138
2Laake, J. and Rexstad, E. (2008)

3. Start up R. From within R, select File and choose to Change dir.... Navigate to

your new empty directory.

4. From within R, select Packages from the menu and choose Install package(s) from
local zip at the bottom of the list.

5. Doing so will show a select files window. Navigate to Z:\ and select the RMark.zip
file.

6. Issue the command library(RMark) within the R command window.
7. Next issue the command MarkPath="Z:/RMark/Mark/".

8. The initial set up is now complete.

It is impossible to teach everything that Mark is capable of in one computing session.
The instructions are written in a way that should explain what you are doing, rather than
just giving you some computer code to copy. You will be shown how to fit time/group-
dependencies and how to rank the fitted models by AIC value. Unlike Program Mark, in
RMark there is no need to enter the individual parameter index matrices (PIMs) for each
parameter, as the R functions are capable of constructing these from appropriate commands.

This makes RMark a much more efficient way of fitting CJS-type models.

2.2 Cormorant example

This data set is currently in ‘“*.inp’ format, which is the format required for the windows
version of Mark. In order to read it into RMark it needs to be converted. Follow the start-up

instructions for RMark and once you have installed the RMark library read in the data:
> cormorants=convert.inp("Z:/RMark/cormorants.inp")

1. Before a model is fitted to the data, the data need to be processed and important

attributes need to be defined such as:

(a) model: the type of analysis model (e.g., ‘CJS’, ‘Known’, ‘POPAN’)
(

b

begin.time: the time of the first capture/release occasion for labelling

(d
(e

)
)
(c) time.intervals: the lengths of the time intervals between capture occasions
) groups: the list of factor variables in the data to define groups

)

initial.ages: the age of animals at first capture/release corresponding to the

levels of the age grouping variable (age.var)

(f) nocc: number of capture/encounter occasions which is determined from the con-

tents of the ‘ch’ field in the data and the type of analysis model(model).

For this example, we are going to be fitting the CJS model and the data were collected
from 1983 onwards. Therefore, to process the data type:

> corm.process=process.data(cormorants,model="CJS",

begin.time=1983)

. The next step is to instruct the program to create definitions of parameters which

depends on the model you selected in the previous step:
> corm.ddl=make.design.data(corm.process)

. Now we want to fit some models. Following along the lines of Mark, a model is described
by sub-models for each parameter of the particular type of mark-recapture analysis.
With the corm data we are using the CJS model with parameters ¢ and p. A parameter
specification (sub-model) is defined by a list, although in most circumstances the list
will only contain a single element, named the formula. For reasons that will be obvious
later, the parameter specifications should be assigned to an object named with a prefix,
this being the parameter name and the suffix being a description for the formula. For
example, with the simple model, with constant survival and capture probability the

specifications would be:

> Phi.dot=list(formula=~1)

> p.dot=list(formula=~1)
. Create more parameter specifications:

> Phi.time=list (formula=~time)
> p.time=list(formula=~time)

. Now we finally fit the models. To keep all of the models well defined, one can use the

data name and add on the parameter specifications as in the following examples:
> corm.phi.dot.p.dot=mark(corm.process,
corm.ddl ,model.parameters=1ist (Phi=Phi.dot,p=p.dot))

> corm.phi.time.p.dot=mark(corm.process,

corm.ddl,model.parameters=1ist (Phi=Phi.time,p=p.dot))

> corm.phi.time.p.time=mark(corm.process,

corm.ddl ,model .parameters=1ist (Phi=Phi.time,p=p.time))

> corm.phi.dot.p.time=mark(corm.process,

corm.ddl,model.parameters=1ist (Phi=Phi.dot,p=p.time))
To see the output from any of these models you can use the command:

> summary (NAME OF MODEL)

Look at the output for the model corm.phi.dot.p.dot.

6. Look at the output for the model corm.phi.time.p.dot. Do survival probabilities

appear to differ over time?

7. By looking at the output from the two nested models corm.phi.time.p.dot and
corm.phi.dot.p.dot, conduct a likelihood-ratio test to see if the survival probabil-

ities differ significantly over time.

8. To compare the results from all of the models you have fitted you need to collect them

together:
> corm.cjs.results=collect.models()
9. Display the list of all models fitted:
> corm.cjs.results

10. The models in this list are ranked by AICc. Out of the 4 models you have fitted, which
is the most appropriate for the data?

NOTE: Keep R open so that you can compare the RMark output with the Program Mark
output.

3 Program Mark

Program Mark is the original software capable of fitting capture-recapture models and has a
windows interface. The software is located in the SMSAS Departmental Software directory.

Open Program Mark 5.0.

3.1 Analysis of Cormorant Data

1. Select File and select New. A window opens which allows you to load the data and

select the type of data you wish to analyse.

2. Add title Cormorant to the Title for this set of data box and press Click to
select File. Navigate your way to your Mark directory and select the file cormorants. inp.

If you click View File you will be able to see the encounter history input.

3. This data set has 11 encounter occasions, and you need to select the Recaptures only

input option on the left hand bar. All other options can be left as default.
4. Click OK.

5. We now wish to fit the four models we previously fitted in RMark. To do this, select
Run and select Pre-defined Model(s).

10

11

12.

13.

. Add a title for the analyses.

. Click Select Models. On the Phi tab press Select All and similarly on the p tab.
. Press OK to return to the Setup screen.

. Leave all other options on the default setting and click OK to run.

. A table of results is now shown. You have fitted the same models as you fitted using

RMark. Models are ranked using the information criterion AICc.

. You should be able to see a difference in ordering of the models from RMark and Mark.
Can you see which values in the table are different? The reason for this difference is
to do with a statistical property called parameter redundancy. We will discuss this
phenomenon in detail later in the course and we will run a computer practical using
software Maple which is capable of detecting this feature. The correct model order is
in fact that produced by Mark; what conclusions can you draw about the best model
for the data?

You can look at the parameter estimates by right clicking on the model listed in the
table.

Finally, let us look at a summary m-array of the input data. Select the Output list and
select Input data summary. This will show you the data presented in an m-array like

those shown during the lecture course. Comment on the off-diagonal m-array entries.

MAS8S88: Ecological Statistics Assessment 3

Capture-recapture models: RMark

Please hand in your assessment to the SMSAS general office
by 12.00 on Friday 30th March 2012.

Question 1: Analysing dipper data

The dipper data and a number of other data sets are already contained in the RMark package.
The aim of this example is to fit a Cormack-Jolly-Seber model to a data set. You will be
shown how to fit time/group-dependencies and how to rank the fitted models by AIC value.
The dipper data has groupings by sex, and therefore we can fit models with survival and

capture probabilities which are different between the sexes.

(a) Extract the data from the RMark package and put a copy of it in your directory:
> data(dipper)
(b) Check this is the only contents of your workspace
> 1s()
(c) Obtain a summary of the dipper data
> summary (dipper)
(d) How many female birds are in the data set?
(e) View the first 5 records of the dipper data
> dipper[1:5,]

For this example, we are going to be fitting the CJS model, the data were collected from
1980 onwards, and the data are grouped into males and females. Therefore, to process

the data type:

> dipper.process=process.data(dipper,model="CJS",

begin.time=1980,groups="sex")

(f) The next step is to instruct the program to create the PIM structure which depends on

the model you selected in the previous step:

> dipper.ddl=make.design.data(dipper.process)

(g) Now we want to fit some models. Following along the lines of Mark, a model is described
by sub-models for each parameter of the particular type of mark-recapture analysis. With
the dipper data, we are using the CJS model with parameters ¢ and p. A parameter
specification (sub-model) is defined by a list. For reasons that will be obvious later, the
parameter specifications should be assigned to an object named with a prefix being the
parameter name and the suffix being a description for the formula or some other strategy
like numbering. For example, with the simple model, with constant survival and capture

probability the specifications would be:

> Phi.dot=list(formula=~1)

> p.dot=list(formula=~1)

(h) Create more parameter specifications:
Phi.time=1list(formula=~time)
Phi.sex=list(formula=~sex)
Phi.sexplusage=list(formula=~sex+age)

>
>
>
> p.time=list(formula=~time)
> p.Time=list (formula=~Time)
>

p-Timeplussex=1ist (formula=~Time+sex)

(i) Now we finally fit the models. To keep all of the models well defined, one way is to use

the data name and add on the parameter specifications as in the following examples:

> dipper.phi.dot.p.dot=mark(dipper.process,
dipper.ddl,model.parameters=1ist(Phi=Phi.dot,p=p.dot))

> dipper.phi.time.p.dot=mark(dipper.process,
dipper.ddl,model.parameters=1ist(Phi=Phi.time,p=p.dot))

> dipper.phi.sex.p.dot=mark(dipper.process,
dipper.ddl,model.parameters=1ist (Phi=Phi.sex,p=p.dot))

> dipper.phi.sex.p.Timeplussex=mark(dipper.process,

dipper.ddl,model.parameters=1ist (Phi=Phi.sex,p=p.Timeplussex))

> dipper.phi.time.p.time=mark(dipper.process,
dipper.ddl,model.parameters=1list (Phi=Phi.time,p=p.time))

> dipper.phi.sexplusage.p.dot=mark(dipper.process,
dipper.ddl,model.parameters=1ist (Phi=Phi.sexplusage,p=p.dot))

Six of the possible sixteen models are listed above. Using an appropriate naming scheme,
fit all 16 models to the dipper data set. To see the output from any of these models you

can use the command:

> summary (NAME OF MODEL)

Look at the output for the model dipper.phi.sex.p.Timeplussex. Make sure you

understand why there are 5 parameters in this model.

(j) Look at the output for the model dipper.phi.sex.p.dot. Do the males or females have

a higher survival rate?

(k) By looking at the output from the two nested models dipper.phi.sex.p.dot and
dipper.phi.dot.p.dot, conduct a likelihood-ratio test to see if the male and female

survivals are significantly different.

(1) To compare the results from all of the models you have fitted you need to collect them

together:
> dipper.cjs.results=collect.models()

This command looked through all of the objects in the workspace and collected any object

that had a class ‘mark’.
(m) Display the list of all models fitted:
> dipper.cjs.results

(n) The models in this list are ranked by AIC. Out of the 16 models you have fitted, which
is the most appropriate for the data?

Question 2: Analysing simulated data

A data set called testdata.inp is located in the Program Mark folder. Copy this data set
to an empty directory. This data set is currently in ‘*.inp’ format and so it needs to be
converted into a format useable by RMark. Follow the start up instructions for RMark and

once you have installed the RMark library read in the data:

> testdata=convert.inp("Z:/.../testdata.inp",

group.df=data.frame(sex=c("Female","Male")))

Following a similar model notation to the dipper and cormorant examples, fit appropriate
sex and time-dependent models to the data and using the AIC as a suitable measure, decide

from which model the data were simulated.

