Herpetofauna Workers Meeting 2015

How easy is it to translocate amphibian and reptile populations? Lessons from removal modelling

Eleni Matechou, Rachel McCrea and Richard A. Griffiths

Byron Morgan, Brett Lewis, and David Sewell

NERC SCIENCE OF THE ENVIRONMENT

EPSRC

Engineering and Physical Sciences Research Council

DICE University of 50

The iceberg effect

How much survey effort is needed to remove a population?

- Numbers available for capture on the day – 'the iceberg effect'
- As animals are removed, more animals replace them
- Real depletions confounded by responses to weather conditions
 - aestivation in the summer
 - hibernation in the winter

Number of slow-worms removed from donor site July-October 1995

From: Platenberg, R.J. & Griffiths, R.A. 1999. Biological Conservation 90: 125-132 University of Kent

Number of slow-worms removed from donor site July-October 1995

Fig. 2. Catch-depletion analysis by linear regression after 25 visits $(y=-0.0234x+1.4961; r^2=0.0151, p>0.05).$

From: Platenberg, R.J. & Griffiths, R.A. 1999. Biological Conservation 90: 125-132 University of Kent

Statistical models are like lamposts...

"...they should be used for illumination not for support."

Case study A: great crested newts

- 100 + days of removal
- Drift-fence, pitfalls, terrestrial searches
- Released into enhanced receptor site 600 m away

Removal data

Basic removal model

- Geometric model
 - Assume the population is closed
 - p: constant capture probability
 - Pr(an individual is captured at occasion k) = $(1-p)^{k-1} x p$
- Commonly used statistical model
 - Time to conception for human couples
 - Time until a machine fails

Basic removal model

Weather covariates

Are sites really being cleared?

- If capture probabilities vary with weather conditions, consecutive days without any captures may reflect the weather conditions rather than indicating that the population has been cleared.
- What if the population is not in fact closed and new individuals arrive during the study period?

Case study B: common lizards

- Modelled removals from September October 2011(twice daily: 81 visits)
- Exclosure fencing with high density of ACOs
- 334 lizards removed

Modelling emergence/arrival

- New individuals are assumed to arrive in groups (pulses).
- These can for example be juveniles or individuals that are emerging from underground.
- The number of arrival groups and their size(s) are unknown.

Model and algorithm

- We use a RJMCMC algorithm (Green 1995*) to fit our model and obtain estimates of:
 - The population size, N.
 - The arrival pattern.
 - The probability that fewer than x individuals are still present at the site at the end of the study.

*Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika*, *8*2(4), 711-732.

Common lizards-numbers removed

Common lizards: arrival pattern

Common lizards: population size

 The value of N with the highest probability is 340 individuals (removed = 334).

Conclusions

- We have depletion models that can account for changes in detectability due to weather conditions
- We have depletion models that can account for new arrivals
- We can estimate the number of animals that were actually present, BUT
- The estimate of N has a high degree of uncertainty
- Methodological improvements may help reduce this level of uncertainty...

Where do we go from here?

- Incorporate more covariates to account for seasonal/climatic variations in detectability and arrivals.
- Allow for individuals to become temporarily unavailable for detection.
- Increase precision of parameters by incorporating expert knowledge.
- Build an R-package.
- Develop a user-friendly frontend...eventually...
- Watch this space!

Thanks!

- Amy Wright
- Jon Cranfield and Herpetologic

