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INTRODUCTION

SECTION 1



Introduction

 We are seeing changes in 
wild animal populations 
worldwide.

 In Britain there are notable 
declines in sparrows 
(Passer domesticus), 
lapwing(Vanellus vanellus), 
spotted fly-catcher 
(Muscicapa striata), etc.

 Effects of global warming 
and changes in farming 
practice



Motivation

 Importance of 
anthropogenic 
change: 6th mass 
extinction.

 2010: The year of 
biodiversity

 http://www.eol.org





Large literature

 Papers in journals such as: Biometrics, JABES, 
JRSS, J.An. Ecology. Ecology, Oikos, J. Wildlife 
Management, Can. J. Fish. Aq. Sci., Meth. Ecol. 
Evol., Epidemiology

 Books: Seber (1982), Williams et al (2002), King 
et al (2009), McCrea and Morgan (2011)

 Web-sites:www.bto.org

 Computer packages: DISTANCE, MARK, 

E-SURGE, Presence.



Statistical Ecology; capture-recapture

 Estimation of population sizes 

 Estimation of important demographic rates 
(cf human demography):

 Survival

 Productivity

 Movement

 Dealing with complexity

 Use of capture-recapture methods; started 
with H.C. Mortensen, 1899. 



Recent Kent projects
 Jose multi-species survival; synchrony; IoM
 Guru Occupancy; tigers, Sumatra
 Beth Benthic organisms; diversity; trawling
 Rachel Model selection; goodness-of-fit; multi-state    

models
 Diana Parameter redundancy
 Lauren Spatio-temoral capture-recapture; cheetahs; 

missing time-varying individual covariates.
 Martin Meercat survival; closed population sizes
 Teresa Over-wintering wildfowl
 David Demography of the lizard orchid
 Dan local weather; use of lasso for variable selection
 Achaz Ibex; winter snow vs. reproductive senescence
 Eleni Stop-over models; demographic uses
 Takis Integrated population modelling; batch marking
 Ben Parameter redundancy



Marking

 We obtain information on 
survival from studying 
previously marked animals.

 These may be observed 
again alive or dead.

 It is assumed that marking 
does not affect behaviour 
(See J. An. Ec. 2005).



Shag rings, Isle of May: José



Identification/recapture/resighting of Cormorant, 

Phalacrocorax carbo sinensis, and great crested newt, Titurus 

cristatus



Further examples



Practicalities



Try again



Deer collars on Rum



Alternatives

 Radio tracking

 DNA

 Note possibility of errors

 Problems with ring loss



Fecundity

The key demographic 
processes involve survival, 
reproduction and 
movement. We shall be 
mainly concerned with the 
estimation of survival. 

Estimation of fecundity can 
be challenging, but is 
typically easier than the 
estimation of survival. For 
example, Cory‟s 
shearwaters lay just one 
egg.



The Classical Approach

 For a given data set we consider a family of 
alternative probability models.

 Each model may be fitted by means of optimising 
some criterion, for example by maximising a 
likelihood over the parameter space. Many 
parameters may be involved.

 Models may be compared in terms of maximised 
likelihoods, or information criteria, such as the 
AIC or BIC.

 Usually a single best model is selected to 
represent the data, in terms of the model 
parameter estimates and estimates of their 
precision.



Classical continued

 Models may be averaged, using model weights 
derived from AICs. Cf. Bayesian approach.

 Model averaging, in general, should not be 
uncritical, as differences resulting from different 
models should be understood (McAllister).

 Computing is usually done using packages such 
as MARK or E-SURGE. It is necessary to interface 
with packages in order to make model 
specifications. For example one can use 
parameter-index matrices, PIMs.

 Diagnostics include looking at residuals of various 
kinds, and constructing tests of goodness-of-fit.



The Bayesian approach

 Brooks Catchpole and Morgan, (2000) 
Bayesian Animal Survival Estimation, 
Statistical Science, 15, 357-376.

 King, Morgan, Gimenez and Brooks (2009) 
Bayesian Analysis for Population Ecology. 
Chapman & Hall/CRC, London.



ESTIMATING ABUNDANCE

SECTION 2



Estimating Abundance

 Standard estimators

 The importance of heterogeneity

 Illustrations from different areas



How many individuals? From skinks..



..to taxis: need for individual 

identification



Medical and social applications

 How many French people are there 
(Laplace)?

 How many illegal firearms?

 How many drugs users? Eg., in a Bangkok 
study of drug users, 7062 individuals had 
hospital encounters, with f1=2955, 
f2=1186, f3=803, …

 How many traffic offences?



How many animals?

The Lincoln-Petersen estimate is given by the 
solution in N to the equation below, where a first 
sample of n1 animals are captured and marked, 
and then a later sample resulted in n2 animals, of 
which m2 were marked.



The Schnabel census: data

Repetition of the sampling scheme results in data 
of the form below

1 2 3 4 5 6 7 8 9 10

hares 25 22 13 5 1 2 0 0 0 0

taxis 142 81 49 7 3 1 0 0 0 0

voles 29 15 5 16 27 0 0 0 0 0

voles 18 15 8 6 5 0 0 0 0 0

chips 14 13 18 12 7 5 1 1 0 1



The Horvitz-Thompson estimate



Horvitz-Thompson



Likelihood for the Schnabel census

The general form of the likelihood is given by

where N is the population size,  denotes the 
model parameters, pj now denotes the probability 
an animal is caught j times, fj is the number of 
animals caught j times, k is the number of 
sampling occasions and D is the number of 
distinct animals caught.



Violation of assumptions

 This approach is harder than it seems 
because, amongst other things,  animals 
differ in their re-capture rates.

 Nevertheless, this remains an area of 
active research.



Models: the bias due to unmodelled 

heterogeneity can be severe!

 Example: Ayre (1962) estimated an anthill population to be 
109 when there were known to be 3,000 ants in it.

Ayre, L.G. 1962. Problems in using the Lincoln index for estimating the size of ant 

colonies (Hymenopter formicidae). J.N.Y. Ent. Soc. 70: 159-166.



 Finite Mixture models1: approximate the 
distribution of p using a mixture of a few ps 
(conceptually from a few sub-populations).

 Continuous (or infinite mixture) models2: Model 
the distribution of p using some flexible 
continuous distribution (e.g. Beta)

Two recent approaches to unobservable 

heterogeneity

1 Pledger, S. 2000. Unified maximum likelihood estimates for closed capture-recapture 

models using mixtures. Biometrics 56: 434-442.

2. Dorazio, R.M. and Royle, J.A. 2003. Mixture models for estimating the size of a closed 

population when capture rates vary among individuals. Biometrics 59: 352-364.



Alternative mixture models

f(p)

p 10

Finite mixture model

(mixture of 2 types)

p1 p2

Infinite mixture model



Types of mark-recapture model

 M0: No heterogeneity

 Mt: Capture probabilities vary with time 
(occasion)

 Mb: Capture probabilities depend on behaviour 
(trap-shy or trap-happy)

 Mh: Capture probabilities are heterogeneous 
(vary between individuals)

 And combinations: Mtb, Mth, Mbh, Mtbh



New mixture model

We proposed a mixture of binomial and 
beta-binomial distributions for estimating 
the size of closed populations. 

The new model includes discrete (two 
populations) and infinite mixtures, used 
for the recapture probability by Pledger, 
and Dorazio and Royle, as special cases



Modelling heterogeneity of recapture

pj /  a a
j(1-a)

k-j

pj / r(+r ) r (1-+r )/r(1+r )

´ j
Be

pj / { j(1-)k-j + (1-) j
Be}



Alternatives

Nonparametric (E and Q), and the logistic-normal-

binomial model:



Illustration of different precision for a single 

data set, where it is thought N=102.

Model N 95% Profile 
interval

Beta-bin 106.0 81.2-313.2

2 Bins 72.8 72.0-76.4

Bin + Beta-bin 77.7 72.5-155.8

E 84.5 75.6-103.8

Q 80.7 77.6-84.4



Change to beta parameters

 For the beta-binomial model, we have 
=0.40, =3.41.

 For the new mixture we have

=1.30, =5.95.



Modelling the parameter p near zero

Thus the new model allows flexible 
modelling of the probability of recapture, 
p,  near zero, which is important for 
estimating N. 

Shown in the next graph is how the 
logistic-normal-binomial, beta and the 
beta component of the new mixture can 
differ in modelling p near zero, for a 
particular data set.



Different capture probabilities near zero.



Results: illustrative comparisons of 

model fits: -max log-lik., values.

Data Binomial Beta-
binomial

2 Bins Bin + 
Beta-bin

House mice 44.43 43.55 39.88 39.58

Skinks 86.71 22.35 23.04 18.57

Wood mice 357.26 47.45 87.73 45.34

Taxicabs 16.95 16.44 16.34 16.34

Squirrels 39.38 19.24 17.82 17.76



Illustrative coverage, 95% profile CI

True model Fitted model Coverage

Beta-bin Binomial 0.003

Beta-bin Beta-bin 0.953

Beta-bin 2 Bins 0.750

Beta-bin Bin + Beta-bin 0.933

2 Bins Binomial 0.168

2 Bins Beta-bin 0.288

2 Bins 2 Bins 0.938

2 Bins Bin + Beta-bin 0.955



Further work

 Mix a binomial with a logistic-normal-
binomial, in order to include also the cases 
of time and behavioural response.

 Extend mixture to modelling survival and 
site-occupancy models.

 Include covariates.



SURVIVAL ESTIMATION

SECTION 3



Survival estimation

 3.1: Analysing recovery data

 3.2: Capture-recapture data

 3.3: Integrated recaptures and recoveries



Analysing Recovery Data

 Cohort of individuals marked and re-
released into the population

 When individuals die, they may be recovered 
dead; or their rings/marks may be recovered.

 Form encounter histories for each individual:

 1: time individual marked

 2: time individual recovered dead

 100020

 010000



Recovery Data

 Ri: number of marked individuals released 
at occasion ti

 dij: number of individuals released at 
occasion ti and recovered dead in the time 
interval (tj-1,tj)

 Consider a 4 encounter occasion study, then 
individuals released at time t1 can be 
summarised as:

R1 d1,2 d1,3 d1,4 R1-d1,2-d1,3-d1,4



Multinomial Distribution

 Defining:

 i: probability an individual alive at occasion ti survives 
until occasion ti+1

 i: probability an individual who dies between occasion ti

and ti+1 is recovered (or has its ring/tag) and reported

R1 d1,2 d1,3 d1,4 R1-d1,2-d1,3-d1,4

R1 (1-1)1 1(1-2)2 12(1-3)3
1¡
X

j

Pr(di;j)



Product Multinomial

 Consider a general m-array for a 4 occasion 
recovery study

where 

Releases Recovery Occasion Never Recovered

R1 d1;2 d1;3 d1;4 d1;1
R2 d2;3 d2;4 d2;1
R3 d3;4 d3;1

di;1 = Ri ¡
X

j

di;j



Product Multinomial

 Then the corresponding probabilities are

 Assuming independence between release cohorts, 
the log-likelihood function is then defined by

Releases Recovery Occasion Never Recovered

R1 (1¡ Á1)¸1 Á1(1¡ Á2)¸2 Á1Á2(1¡ Á3)¸3 1¡
P
j Pr(d1;j)

R2 (1¡ Á2)¸2 Á2(1¡ Á3)¸3 1¡
P
j Pr(d2;j)

R3 (1¡ Á3)¸3 1¡
P
j Pr(d3;j)

log(L) = constant +
X

i

X

j

di;j log(Pr(di;j))



Example: Mallards, Anas platyrhynchos

Year of No. Year of recovery (-1962)

ringing ringed 1 2 3 4 5 6 7 8 9

1963 231 10 13 6 1 1 3 1 2 0

1964 649 58 21 16 15 13 6 1 1

1965 885 54 39 23 18 11 10 6

1966 590 44 21 22 9 9 3

1967 943 55 39 23 11 12

1968 1077 66 46 29 18

1969 1250 101 59 30

1970 938 97 22

1971 312 21



MLEs: Mallard model (.),(t)

Parameter MLE SE

Á(¢) 0.638 0.0153

¸1 0.118 0.0369

¸2 0.247 0.0290

¸3 0.162 0.0180

¸4 0.189 0.0186

¸5 0.167 0.0156

¸6 0.193 0.0152

¸7 0.200 0.0143

¸8 0.226 0.0151

¸9 0.156 0.0144



Freeman-Morgan Model

 For bird populations, first-year survival is often 
dramatically different from adult survival

 If individuals marked as nestlings, then it is 
possible to adapt the model to incorporate age-
dependent parameters



Freeman-Morgan Model

 Introduce model notation x/y/z:

 x: first-year-survival probability

 y: adult-survival probability

 z: recovery probability

 Possible parameter dependencies

 c: constant

 t: time-dependence

 ak: age-dependence up to age k

 v: covariate-dependence (see later section)



Model c/c/t

Releases Recovery Occasion Never Recovered

R1 (1¡ Á(1))¸1 Á(1)(1¡ Á(a))¸2 Á(1)Á(a)(1¡ Á(a))¸3 1¡
P
j Pr(d1;j)

R2 (1¡ Á(1))¸2 Á(1)(1¡ Á(a))¸3 1¡
P
j Pr(d2;j)

R3 (1¡ Á(1))¸3 1¡
P
j Pr(d3;j)

 (1): first-year survival probability

 (a): adult survival probability



More general age-dependence

Pr(dij(a)) =

8
>><
>>:

0 i > j

(1¡ Áj(a))¸j(a) i = jQj¡1
k=1 Ák(a+ k ¡ i)

£(1¡ Áj(a+ j ¡ i))¸j(a+ j ¡ i) i < j



Example: Mallards (marked as young)

Year of No. Year of recovery (-1962)

ringing ringed 1 2 3 4 5 6 7 8 9

1963 962 82 35 18 16 6 8 5 3 1

1964 702 103 21 13 11 8 6 6 0

1965 1132 82 36 26 24 15 18 4

1966 1201 153 39 22 21 16 8

1967 1199 109 38 31 15 1

1968 1155 113 64 29 22

1969 1131 124 45 22

1970 906 95 25

1971 353 28



MLEs: Mallards t/c/t model

Parameter MLE SE Parameter MLE SE

Á1(1) 0.441 0.0487 ¸1 0.154 0.0201

Á2(1) 0.481 0.0545 ¸2 0.280 0.0327

Á3(1) 0.585 0.0461 ¸3 0.181 0.0217

Á4(1) 0.459 0.0419 ¸4 0.223 0.0189

Á5(1) 0.425 0.0424 ¸5 0.173 0.0148

Á6(1) 0.604 0.0439 ¸6 0.239 0.0222

Á7(1) 0.589 0.0450 ¸7 0.271 0.0228

Á8(1) 0.560 0.0549 ¸8 0.236 0.0207

Á9(1) 0.293 0.1348 ¸9 0.152 0.0172

Á(2+) 0.692 0.0198



Extensions

 Modelling ring-recovery data when the 
number of ringed individuals is not known 
(Brown, 2010) 

 Modelling adult-survival heterogeneity 
(Besbeas et al, 2009)

 Mixture models for modelling age-
dependent survival (McCrea et al, 2010)



References

 Besbeas et al (2009) in Modelling Demographic 
processes in marked populations. pp 513-539

 Brown (2010) PhD Thesis, University of Kent

 Brownie et al (1985) Statistical inference from 
band recovery data – A handbook.

 Freeman and Morgan (1992) Biometrics, 48: 
217-235.

 McCrea et al, (2010) Submitted.



Capture-recapture data

 Suppose now, that instead of recovering 
dead individuals, attempts are made 
instead to recapture live individuals

 1: initial capture and subsequent live 
recaptures

 Examples:

 101101

 100000



Recapture M-array

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4 Never Recaptured

R1 m12 m13 m14 R1-m12-m13-m14

R2 m23 m24 R2-m23-m24

R3 m34 R3-m34

 Ri: Number of individuals released in year ti

 mij: Number of individuals released in year ti and 

next recaptured in year tj



Encounter Histories to M-arrays

 1011

 Ri: newly marked individuals AND re-released 

individuals

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4 Never Recaptured

R1 m12 m13 m14 R1-m12-m13-m14

R2 m23 m24 R2-m23-m24

R3 m34 R3-m34



Singlesite Probabilities

 i: probability an animal alive at time ti survives 
to time ti+1

 pi+1: probability an animal alive at time ti+1 is 
recaptured at time ti+1

 Cormack-Jolly-Seber Model: (t),p(t)

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

Never 
Recaptured

R1 1p2 1(1-p2)2p3 1(1-p2)2(1-p3)3p4 1-probabilities

R2 2p3 2(1-p3)3p4 1-probabilities

R3 3p4 1-probabilities



Example: Great Crested Newts

 Mark-recapture data 
collected between 1995 
and 2006

 Population of Great 
crested newts, Tristurus 
cristatus, close to the 
University of Kent 
campus.

 Meta-population studied 
over four groups of ponds

 Best model: (t),p(pond)







Wellcourt Study Site



Great Crested Newts: (t),p(pond)

 Garden Pond: P = 0.697 (0.629-0.757)

 Swimming Pool: p = 0.845 (0.726-0.919)

 Snake Pond: p = 0.294 (0.225-0.373)

 Pylon Pond: p = 0.233 (0.100-0.455)

What is 
causing this 

temporal 
variation?

Griffiths et al (2010)



Extensions

 General age and time-dependent models

 Individual heterogeneity (random effect) 
models (Gimenez and Choquet, 2010)

 Incorporation of behavioural traits, e.g. 
trap-response



References

 Cormack (1964) Biometrika, 51: 429-438

 Gimenez and Choquet (2010) Ecology, 91: 951-957

 Griffiths et al (2010) Biological Conservation, 143: 485-491

 Jolly (1965) Biometrika, 52:225-247

 Seber (1965) Biometrika, 52:249-259



Joint recapture and recovery models

 What if both recapture and recovery data 
are collected on the same individuals?



Sufficient Statistics

 Catchpole, Freeman, Morgan and Harris (1998) 
Integrated Recovery/Recapture Data Analysis. 
Biometrics. 54, 33-46

 General – cohort/age/time-dependence

 Assumes no emigration

 Alternative modelling approach in Barker (1997,1999).



CM Parameters (Time-dependent Model)

 ϕj: probability an animal alive at time tj survives until time 

tj+1;

 λj: probability an animal which dies in the interval (tj,tj+1), 

has its death reported;

 pj: probability an animal alive at time tj, is captured at tj.



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

• 1: Live recapture

• 2: Dead recovery



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

ϕ1p2(1-ϕ2)λ2

ϕ1(1-p2)ϕ2 (1-p3)(1-ϕ3)λ3

ϕ1p2ϕ2p3ϕ3p4ϕ4p5χ5

ϕ1p2χ2

• χj: probability an animal alive at time tj is not 

seen again, alive or dead after tj



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

ϕ1p2(1-ϕ2)λ2

ϕ1(1-p2)ϕ2 (1-p3)(1-ϕ3)λ3

ϕ1p2ϕ2p3ϕ3p4ϕ4p5χ5

ϕ1p2χ2

• Known survival..... 





1

1

j

s

sj 



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

ϕ1p2(1-ϕ2)λ2

ϕ1(1-p2)ϕ2 (1-p3)(1-ϕ3)λ3

ϕ1p2ϕ2p3ϕ3p4ϕ4p5χ5

ϕ1p2χ2

• Disappearing individuals..... 

))1(1()1(1 11  jjjjjj p 



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

ϕ1p2(1-ϕ2)λ2

ϕ1(1-p2)ϕ2 (1-p3)(1-ϕ3)λ3

ϕ1p2ϕ2p3ϕ3p4ϕ4p5 χ5

ϕ1p2χ2

• Recaptures..... 



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

ϕ1p2(1-ϕ2)λ2

ϕ1(1-p2)ϕ2 (1-p3)(1-ϕ3)λ3

ϕ1p2ϕ2p3ϕ3p4ϕ4p5χ5

ϕ1p2χ2

• Death and recovery... 



CM Likelihood Construction

1 1 2 0 0

1 0 0 2 0

1 1 1 1 1

1 1 0 0 0

ϕ1p2(1-ϕ2)λ2

ϕ1(1-p2)ϕ2 (1-p3)(1-ϕ3)λ3

ϕ1p2ϕ2p3ϕ3p4ϕ4p5χ5

ϕ1p2χ2

• Non-captures..... 



CM Sufficient Statistics

 D(j): number of animals recovered dead in the 

interval (tj,tj+1);

 V(j): number of animals captured or recaptured 

at tj and not seen again during the study;

 W(j): number of animals recaptured at tj+1;

 Z(j): number of animals not recaptured at tj+1

but encountered later either dead or alive



CM Likelihood Construction

    













T

j

T

j

jZ

j

jW

j

jV

jj

T

j

jD

jjj ppL
1

1

1

)(

1

)(

1

)(
1

1

)(
)1()1( 

 Note that many animals are counted in both V(j) 

and W(j)

 Sufficient statistics D, V, W and Z are therefore 

not independent multinomials

 Time-dependence structure given here, CM form 

completely general.



MODEL ASSESSMENT

SECTION 4



 Model Selection

 Comparing models: which one is best?

 AIC/LRT tests

 Step-wise approaches using score tests

 Goodness-of-fit

 Absolute goodness-of-fit tests

 Diagnostic assessment – departure from model 
assumptions



Model Selection using AIC

 Return to the Great crested newt example 
presented earlier

 Cormack-Jolly-Seber model:

 Constant or time-dependent parameters

 Pond specific parameters

 Weather covariates?



AIC

Akaike's information criterion is de¯ned by:

AIC = ¡2 logL(µ̂ j x) + 2K

where L(¢ j x) is the likelihood function given the

observed data x, µ̂ are the MLEs of the components

of parameter µ and K is the size of µ̂, which can be

interpreted as the number of estimable parameters

of the model.



AIC

 The smaller the AIC, the smaller the -2logL, which will 
signify a comparatively better fitting model. Of course the 
number of parameters is also discriminated against within 
the information criterion, and the AIC can be used to rank 
models in a model set.

 Models not in the set remain out of consideration.  AIC is 
useful in selecting the best model in the set; however, if all 
models are very poor, AIC will still select the one estimated 
to be the best, but even that relatively best model might be 
poor in an absolute sense. 

 A full discussion and derivation of the AIC can be found in 
Burnham and Anderson (2002).



Relative AIC

 It is not the absolute size of the AIC value that is 
important, rather it is the relative values over the 
set of models considered.

 Particularly the differences between particular 
AIC values, i, that are important:

where AICi is the AIC of model i and AICmin is the 
AIC of the model with the smallest AIC.

minAICAIC  ii



AICc

 If the sample size, n, is small an adapted AIC is 
recommended:

for n>K+1.

1

)1(2
AICAICc






Kn

KK



QAIC/QAICc

 If overdispersion exists, that is, the sample variance 
exceeds the theoretical (model-based) variance, then 
quasi-likelihood theory has been employed to modify the 
AIC (and AICc), which result respectively in the QAIC (and 
QAICc), defined by

1

)1(2
QAICQAICc

2
ˆ

log2
QAIC











Kn

KK

K
c

L

an estimate 
of a variance 

inflation
factor



Great Crested Newt Model Selection

Code Model QAICc ¢ QAICc n

1.1 Á(t); p(pond+ sex) 1941.62 0.00 16

1.2 Á(t); p(pond) 1941.86 0.24 15

1.3 Á(t); p(pond ¤ sex) 1942.60 0.98 19

1.4 Á(t); p(pond ¤ time) 1945.99 4.37 52



Great Crested Newt Model Selection

Code Model QAICc ¢ QAICc n

1.1 Á(t); p(pond+ sex) 1941.62 0.00 16

1.2 Á(t); p(pond) 1941.86 0.24 15

1.3 Á(t); p(pond ¤ sex) 1942.60 0.98 19

1.4 Á(t); p(pond ¤ time) 1945.99 4.37 52



(t) versus (WT+NAR)

Changes 
to ponds



Model selection using hypothesis tests

Consider testing the null hypothesis H0 : µ = µ0 versus the alternative

H1 : µ 6= µ0. Denote the likelihood obtained from data x by L(µ j x), then the

test statistic for a likelihood ratio test (LRT) is

¸ =
L(µ0 j x)
L(µ̂ j x)

where µ̂ is the maximum likelihood estimate of µ. If the null hypothesis is true,

then subject to certain regularity conditions, asymptotically, ¡2 log ¸ has a Â2d
distribution, where d is the di®erence in the numbers of parameters between the

two models.



Score tests for comparing models



Score tests

Suppose we wish to test the null hypothesis

The score test statistic is given by in which U is

the scores vector defined by                    and J is the Fisher

Information matrix, given by 

Under the null hypothesis,                     .dz ~

00 :  H

i
i

lU




UJUz 1

 jiij lJ   2



Graphical illustration of score test



Comparing nested models

 When we compare nested models using a 
score test, we only need to fit the simpler 
of the two models.

 This is a clear advantage for when the 
data do not support the more complex 
model. Of course if the test is significant 
we need to fit the complex model, but we 
can do so with confidence.



Pathways for ring-recovery model selection

Level 1                    

Level 2         

Level 3         

Level 4         



Illustrative comparisons: importance of 

using the expected information matrix

Score              LR

Obs        Exp

32.71     21.16     23.53

5.44       5.39       5.71

2.44       2.40       2.42

4.38       4.80       4.80

21.66      6.60       6.30

1.47      8.92       8.95



Example: Cormorant ring-recovery data

Comparison S LR df P (score) Model AIC

c=c=c 518.02

c=c=c : c=c=t 104.96 134.83 11 1:85£ 10¡17 c=c=t 405.19

c=c=c : t=c=c 31.69 36.83 10 4:50£ 10¡4 t=c=c 501.19

c=c=c : c=a2=c 0.09 0.09 1 0.77 c=a2=c 519.93

c=c=t : t=c=t 30.51 27.84 10 7:05£ 10¡4 t=c=t 397.35

c=c=t : c=a2=t 0.19 0.19 1 0.66 c=a2=t 407.00

t=c=t : t=a2=t 0.30 0.31 1 0.59 t=a2=t 399.04



Example: Cormorant ring-recovery data

Comparison S LR df P (score) Model AIC

c=c=c 518.02

c=c=c : c=c=t 104.96 134.83 11 1:85£ 10¡17 c=c=t 405.19

c=c=c : t=c=c 31.69 36.83 10 4:50£ 10¡4 t=c=c 501.19

c=c=c : c=a2=c 0.09 0.09 1 0.77 c=a2=c 519.93

c=c=t : t=c=t 30.51 27.84 10 7:05£ 10¡4 t=c=t 397.35

c=c=t : c=a2=t 0.19 0.19 1 0.66 c=a2=t 407.00

t=c=t : t=a2=t 0.30 0.31 1 0.59 t=a2=t 399.04



Absolute Goodness-of-fit Tests

 Absolute goodness-of-fit measures the fit of the 

final selected model.

 Why do we need to assess this?

 All of the models in the model set may not be 

appropriate for the data

 Underlying violation of model assumptions, which has 

not been detected by diagnostic goodness-of-fit step.



Cormorant Model: t/c/t

117 12.02 7.65 7.07 5.52 4.85 4.38 3.19 2.51 2.36 3.27 0.18

118.52 13 12 9.38 8.24 7.44 5.41 4.27 4 5.55 0.31

162.75 13.82 10.8 9.49 8.57 6.23 4.91 4.61 6.4 0.36

275.09 17.86 15.69 14.17 10.31 8.13 7.63 10.58 0.59

184.14 14.5 13.09 9.53 7.51 7.05 9.78 0.54

227.42 12.74 9.27 7.31 6.86 9.52 0.53

107.04 7.36 5.8 5.44 7.55 0.42

135.32 6.08 5.71 7.92 0.44

63.8 3.59 4.98 0.28

57.65 10.16 0.57

42.24 0.78

117 10 11 9 2 4 6 2 1 4 4 0

120 13 18 8 7 3 4 5 8 5 1

160 16 13 6 3 9 4 7 5 0

267 16 10 17 11 6 6 12 1

188 13 17 12 10 4 9 0

238 18 12 5 4 13 0

104 4 6 9 5 0

133 7 4 7 1

66 2 7 1

57 9 1

42 0

Observed m-array

Expected m-array



Cormorant Model: t/c/t

117 12.02 7.65 7.07 5.52 4.85 4.38 3.19 2.51 2.36 3.27 0.18

118.52 13 12 9.38 8.24 7.44 5.41 4.27 4 5.55 0.31

162.75 13.82 10.8 9.49 8.57 6.23 4.91 4.61 6.4 0.36

275.09 17.86 15.69 14.17 10.31 8.13 7.63 10.58 0.59

184.14 14.5 13.09 9.53 7.51 7.05 9.78 0.54

227.42 12.74 9.27 7.31 6.86 9.52 0.53

107.04 7.36 5.8 5.44 7.55 0.42

135.32 6.08 5.71 7.92 0.44

63.8 3.59 4.98 0.28

57.65 10.16 0.57

42.24 0.78

117 10 11 9 2 4 6 2 1 4 4 0

120 13 18 8 7 3 4 5 8 5 1

160 16 13 6 3 9 4 7 5 0

267 16 10 17 11 6 6 12 1

188 13 17 12 10 4 9 0

238 18 12 5 4 13 0

104 4 6 9 5 0

133 7 4 7 1

66 2 7 1

57 9 1

42 0

Observed m-array

Expected m-array

X2 =  57.27
df = 53

p-value = 0.32 



Example: Cormorant Ring-Recovery

Model AIC X2 df P (X2)

c=c=c 518.02 188.30 74 6:35£ 10¡12

c=c=t 405.19 85.71 63 0.03

t=c=c 501.19 149.10 64 9:57£ 10¡9

c=a2=c 519.93 188.40 73 3:79£ 10¡12

t=c=t 397.35 57.27 53 0.32

c=a2=t 407.00 85.78 62 0.02

t=a2=t 399.04 56.86 52 0.30



M-array for Goodness-of-fit Assessment

 We have seen that the ring-recovery m-array can 
be used as a set of sufficient statistics to assess 
absolute goodness-of-fit

 Similarly for single-site recapture data, the 
corresponding m-array can be used

 What about more general models?

 Multi-state recapture m-arrays

 Integrated data? 



Sufficient statistics

 King and Brooks (2003) proposed a closed-form 
likelihood for age or time-dependent multi-state 
capture-recapture-recovery models

 Likelihood is product multinomial

 Sufficient statistics can be used to assess 
absolute goodness-of-fit
 Pearson X2 or Likelihood Ratio G2 statistic

 Note: The Catchpole-Morgan sufficient statistics are 
not multinomial, therefore cannot be used in this way



Diagnostic Goodness-of-fit Tests

 Model Assumptions are necessary for all models presented 
here

 Cormack-Jolly-Seber Model:

 Every marked animal present in the population at sampling time ti has 
the same probability of being recaptured;

 Every marked animal present in the population immediately following 
the sampling at time ti has the same probability of survival until 
sampling time ti+1;

 Marks are neither lost nor overlooked, and are recorded correctly;

 Sampling periods are instantaneous and recaptured animals are 
released immediately;

 All emigration from the sampled area is permanent.  

 The fate of each animal with respect to capture and survival is 
independent of the fate of any other animal.



Diagnostic tests

 Diagnostic goodness-of-fit tests seek to detect 
violations of model assumptions within the data 
set

 Carried out as a preliminary analysis prior to 
model fitting

 Should guide the model structure used for model 
fitting

 Diagnostic tests exist for single and multi-site 
mark-recapture data



Existing diagnostic tests

 Test 1: detects group effects

 Test 2: detects differences in future encounters 
between individuals encountered and not at a 
given occasion

 Test 3: detects differences in future encounters 
between `new‟ (newly marked) and `old‟ 
(recaptured) individuals



Partitioning

 Test 2 and Test 3 are contingency table homogeneity 
tests based upon partitioned sections of the m-array and 
generalised m-array

 Possible to partition the tests into biologically interpretable 
components:

 Test C, a subcomponent of Test 2 tests for immediate trap-
dependence

 Test T, a subcomponent of Test 3 tests for transient 
individuals 



Software to perform GoF tests

 Program Release: Run within Program Mark

 Tests for single-site capture-recapture data

 Software U-Care

 Test for single-site capture-recapture data

 Tests for multi-site capture-recapture data



Cormorant Goodness-of-fit Tests

Test Component Test Â2 df P-Value

2

2.CT 15.61 2 < 0:001

2.CL 0.00 1 1.000

3

3.SR 20.38 3 < 0:001

3.SM 0.99 2 0.610

Total 36.98 8 <0.001

Trap 
dependence 

test

Transience 
test



Cormorant Goodness-of-fit Tests

Test Component Test Â2 df P-Value

2

2.CT 15.61 2 < 0:001

2.CL 0.00 1 1.000

3

3.SR 20.38 3 < 0:001

3.SM 0.99 2 0.610

Total 36.98 8 <0.001

ĉ = 36:98
8

Should adapt model to account for 
trap-dependence and transience, 
rather than just using QAIC



Extensions

 Adaptation of goodness-of-fit tests for joint 
recapture and recovery data and recovery data 
alone

 McCrea, Morgan and Pradel (2011) In prep.



Diagnostic vs Absolute

 Diagnostic tests do not involve fitting any 
models:

 Examine properties of the data

 Defined for time-dependent models only

 Absolute goodness-of-fit

 Fit your best model and then compare observed and 
expected values

 Completely general: cohort, age, state and time-
dependence

 Potentially allow you to compare the fit of models 
including heterogeneous capture/survival
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COMPLEX MODELS

SECTION 5



Complex  models

 5.1 Multi-state models

 5.2 Describing survival through covariates



Multi-state models

(a) Total Population
(b) Population at site 1
(c) Population at site 2



Arnason-Schwarz Model

Site 
A

Site 
B

Site 
C

),( CA

),( AC

),( BC

),( AB

),( CB

),( BA



Account for Movement

Site 
A

Site 
B

Site 
C

),( CA

),( AC

),( BC

),( AB

),( CB

),( BA

),( BB
),( CC

),( AA



Movement Ctd.

 “Closed” Population

 Transitions sum to 1: (A,A)=1-(A,B)-(A,C)

Site 
A

Site 
B

Site 
C
















),(),(),(

),(),(),(

),(),(),(

CCBCAC

CBBBAB

CABAAA









Multisite Encounter Histories

 A 0 B B 0 0

 B A 0 B 0 0

 A A 0 0 0 0

 B 0 B 0 0 0

 ...

 1 0 1 1 0 0

 1 1 0 1 0 0

 1 1 0 0 0 0

 1 0 1 0 0 0

 ...



Multisite M-Array

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4 Never 
Recaptured

A B A B A B

R1(A) m12(A,A) m12(A,B) m13(A,A) m13(A,B) m14(A,A) m14(A,B) R1(A)-

R1(B) m12(B,A) m12(B,B) m13(B,A) m13(B,B) m14(B,A) m14(B,B) R1(B)-

R2(A) m23(A,A) m23(A,B) m24(A,A) m24(A,B) R2(A)-

R2(B) m23(B,A) m23(B,B) m24(B,A) m24(B,B) R2(B)-

R3(A) m34(A,A) m34(A,B) R3(A)-

R3(B) m34(B,A) m34(B,B) R3(B)-

 Ri(r): Number of individuals released at time ti in site r

 mij(r,s): Number of individuals released at time ti in site r 

and next recaptured at time tj in site s.



Encounter History to M-Array

 A0BB

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4 Never 
Recaptured

A B A B A B

R1(A) m12(A,A) m12(A,B) m13(A,A) m13(A,B) m14(A,A) m14(A,B) R1(A)-

R1(B) m12(B,A) m12(B,B) m13(B,A) m13(B,B) m14(B,A) m14(B,B) R1(B)-

R2(A) m23(A,A) m23(A,B) m24(A,A) m24(A,B) R2(A)-

R2(B) m23(B,A) m23(B,B) m24(B,A) m24(B,B) R2(B)-

R3(A) m34(A,A) m34(A,B) R3(A)-

R3(B) m34(B,A) m34(B,B) R3(B)-



Matrix Multisite M-array

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

R1 M12 M13 M14

R2 M23 M24

R3 M34
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Parameters

 i(r): probability of an animal alive at time 
ti in site r, survives until time ti+1

 pi+1(s): probability of an animal alive in 
site s at time ti+1 being recaptured

 i(r,s): probability of an animal alive in 
site r at time ti moving to site s by time 
ti+1



Multisite Probabilities

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

R1 11P2 11Q222P3 11Q222Q333P4

R2 22P3 22Q333P4

R3 33P4

Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

R1 M12 M13 M14

R2 M23 M24

R3 M34



Multisite Probabilities
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Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

R1 11P2 11Q222P3 11Q222Q333P4

R2 22P3 22Q333P4

R3 33P4



Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

R1 11P2 11Q222P3 11Q222Q333P4

R2 22P3 22Q333P4

R3 33P4

Multisite Probabilities
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Multisite Probabilities


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Number 
Released

Recaptured t2 Recaptured t3 Recaptured t4

R1 11P2 11Q222P3 11Q222Q333P4

R2 22P3 22Q333P4

R3 33P4



Simulated Data Example

50 12 4 5 2 4 0 2 0 0 0

50 2 13 3 6 3 1 0 1 0 0

14 5 1 0 1 0 0 0 0

17 3 2 1 2 0 0 0 1

16 2 1 2 1 0 2

11 0 0 3 1 1 0

10 3 0 2 1

5 1 0 0 0

11 6 0

3 0 0

• One Cohort –
no new 
marking during 
the study

• 100 
individuals in 
total – equally 
spread 
between two 
sites



Estimates from Fitted Model

Model fitted

 Site-dependent survival
 (A)

 (B)

 Site-dependent movement
 (A,B)

 (B,A)

 Constant capture 
probabilities
 p

 Note: No time-dependence

 5 parameters in total

Parameter estimates

Parameter
True 
Value

MLE SE

(A) 0.8 0.791 0.0490

(B) 0.8 0.751 0.0568

(A,B) 0.2 0.192 0.0506

(B,A) 0.3 0.295 0.0671

p 0.4 0.407 0.0458



Estimates from Fitted Model

Model fitted

 Site-dependent survival
 (A)

 (B)

 Site-dependent movement
 (A,B)

 (B,A)

 Constant capture 
probabilities
 p

 Note: No time-dependence

 5 parameters in total

Parameter estimates

Parameter
True 
Value

MLE SE

(A) 0.8 0.791 0.0490

(B) 0.8 0.751 0.0568

(A,B) 0.2 0.192 0.0506

(B,A) 0.3 0.295 0.0671

p 0.4 0.407 0.0458



MultiSTATE

 Does not have to be a movement from one site to another 

that is being modelled.

 Perhaps wish to study whether or not an individual is 

classified as a “breeder” or “non-breeder” in a particular 

year.

 To do this, simply label your states:

 A=Breeder

 B=Non-Breeder

 Biological importance to measure these transitions.



Example: Great Cormorants

Phalacrocorax carbo sinensis



Three neighbouring colonies:

• Vorsø (VO)

• Mågeøerne (MA)

• Stavns Fjord (SF)



Recapture Data

 Recapture data collected between 1989 and 1994

 Initial ringing was carried out on non-breeding individuals

 Birds were not recaptured until they had become breeding 

individuals

 Must model transition between non-breeding and breeding states 

as well as geographical movements between the colonies



What transitions must be considered?

 We have a total of six states:

 Non-breeders & Breeders at each of the sites

 Background biology:

 Once an individual has attained a breeding status, it remains 

in the breeding state for the remainder of its life



Transitions

 Natal Dispersal: movement between the 
colonies whilst a non-breeder

 Recruitment: transition from non-
breeding to breeding state

 Breeding Dispersal: movement  
between the colonies whilst a breeder



Diagram showing 

transitions of interest

Reminder of 
Transitions

Natal Dispersal: 
movement between 
the colonies whilst a 
non-breeder

Recruitment:
transition from non-
breeding to breeding 
state

Breeding Dispersal: 
movement  between 
the colonies whilst a 
breeder

Natal Dispersal Recruitment

Breeding 
Dispersal

NB in VO

NB in MA

NB in SF

B in SF

B in MA

B in VO
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Recruitment Probability

0
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Year (-1982)



Emigration: Adapted Cormorant model



A Unified Framework

 Lebreton et al (1999) proposed that multistate 

models have the potential to be a unified 

framework for mark-recapture-recovery models.

 Clearly the single-site Cormack-Jolly-Seber model 

is a special case of the multisite Arnason-Schwarz 

model... however, how do you model joint 

multisite recapture and recovery data..?



Multistate models: Modelling Joint 

Recaptures and Recoveries

Alive Dead



Multistate models: Modelling Joint 

Recaptures and Recoveries

Alive

(alive,dead)=1-
survival

Dead



Multistate models: Modelling Joint 

Recaptures and Recoveries

Alive

(alive,dead)=1-
survival

Dead

Fix transition (dead,alive)=0, i.e. Once an 
animal has died it remains dead



Multistate models: Modelling Joint 

Recaptures and Recoveries

Alive

Fix: 
(Alive)=1

(alive,dead)=1-
survival

Dead

Fix: 
(Dead)=0

Fix transition (dead,alive)=0, i.e. Once an 
animal has died it remains dead



Multistate models: Modelling Joint 

Recaptures and Recoveries

Alive

Fix: 
(Alive)=1

(alive,dead)=1-
survival

Dead

Fix: 
(Dead)=0

p(Alive)=recapture probability p(Dead)=recovery probability

Fix transition (dead,alive)=0, i.e. Once an 
animal has died it remains dead



Multistate models for 

joint recaptures and 

recoveries

Example Simulated 
Data:

1 0 0 2 0 0 0

1 1 0 0 1 0 0

1 0 0 0 0 0 0 

1 0 1 0 1 2 0

1 0 0 0 0 2 0

1 1 0 0 1 1 1

1 0 1 0 0 0 0

...

1: Live Recapture
2: Dead Recovery

Alive Dead



Multistate models for 

joint recaptures and 

recoveries

Example Simulated 
Data:

1 0 0 2 0 0 0

1 1 0 0 1 0 0

1 0 0 0 0 0 0 

1 0 1 0 1 2 0

1 0 0 0 0 2 0

1 1 0 0 1 1 1

1 0 1 0 0 0 0

...

1: Live Recapture
2: Dead Recovery

 Simulated 200 individual 

encounter histories

 Parameter values:

 Survival probability = 0.6

 Recapture probability = 0.4

 Recovery probability = 0.3

 Use software M-Surge to fit a 

multistate model to the data



Multistate models for 

joint recaptures and 

recoveries

Example Simulated 
Data:

1 0 0 2 0 0 0

1 1 0 0 1 0 0

1 0 0 0 0 0 0 

1 0 1 0 1 2 0

1 0 0 0 0 2 0

1 1 0 0 1 1 1

1 0 1 0 0 0 0

...

1: Live Recapture
2: Dead Recovery

 Output from fitting the constant 

model

 (alive,dead) = 0.393 (0.0278)

 p(alive) = 0.449 (0.0387)

 p(dead) = 0.305 (0.0343)

 Recall the following parameters 

fixed:

 (dead,alive) = 0

 (alive) = 1

 (dead) = 0



Sufficient Statistics for multi-state 

integrated recapture and recovery data

 Similar to the single site likelihood formation –
directly models live and dead encounters

 Each individual encounter history can be divided 
into three component parts:

 Last observation and beyond

 Consecutive live recaptures

 Recovery of dead animals 



Sufficient Statistics

 vj
c(r): the number of animals from cohort c that are 

recaptured for the last time in region r at time tj

 n(k,j)
c(r,s): the number of animals from cohort c that are 

observed in location r at time tk, and next observed alive at 

location s at time tj+1

 d(k,j)
c(r): the number of animals from cohort c recovered dead 

between times tj and tj+1 that were last observed alive at time 

tk in location r.



Probabilities associated with the 

Statistics

 j
c(r): the probability an animal from cohort c seen at time tj in 

region r is not seen again in the study

 O(k,j)
c(r,s): the probability an animal from cohort c observed in 

location r at time tk is unobserved until time tj+1 and is 

recaptured in location s at this time

 D(k,j)
c(r): the probability an animal is recovered dead in the 

interval (tj,tj+1) given that it was last seen at time tk in location 

r.



Likelihood Function

 Combining the sufficient statistics and 
derived probabilities....
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Results in the same MLEs for the 

simulated data...

Multistate analysis
Sufficient statistic 
analysis

  = 0.607 (0.0278)

 p = 0.449 (0.0387)

  = 0.305 (0.0343)

 (alive,dead) = 0.393 

(0.0278)

 p(alive) = 0.449 

(0.0387)

 p(dead) = 0.305 

(0.0343)



Extensions

 Models with additional memory (Hestbeck et al, 

1993; Brownie et al, 1993)

 Models with state uncertainty

 Multievent models (Pradel, 2004)

 Partial observation models (King and McCrea, 2010)

 Robust design models

 Combine open and closed capture-recapture 
models (Pollock, 1982)

 Models which do not condition on first 
capture

 Stopover models (Pledger et al, 2009)
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Covariates

 Herons: North and Morgan, Biometrics, 
1979.

 Sheep

 Distinction between environmental and 
individual covariates



Soay sheep, Ovis aries



St. Kilda



Behaviour of the total population size over time

The total population 
of Soay sheep, Ovis 
aries on St. Kilda is 
well known for 
reflecting large 
population crashes, 
when there is high 
mortality due to a 
combination of factors 
such as severe winter 
and high population 
density.



Classical model for female sheep

An early model, resulting from likelihood-ratio tests between 
a small number of selected models is:

1(P+M+h), 2(M), 3:7(M), 8+(P+M)

where P denotes population size, M denotes March rain and 
h denotes horn type. Regressions are logistic, and those on 
M are parallel. 

Note the use of age-classes.

More detailed models result from Bayesian inference.



Individual covariates

 Age (use of age-classes)

 Sex  (separate analyses: here only 
females)

 Climate

 Food

 Density

 Breeding history

 Size

 Health



Illustration of individual covariates



The likelihood for life-history data

For general life-history data, the likelihood has 
the form below:

where c is the time an individual was first 
captured, k is the time the animal was last known 
to be alive, d indicates the known death of the 
animal (1 or 0), w is an indicator variable for 
being seen occasion, and  is  a probability that 
an animal is never seen after an occasion, when 
it was known to be alive.



Time-varying individual covariates

Important individual covariates often vary 
with time, and contain missing values.

One approach is to use models to impute
missing values. Done by Bonner and 
Schwarz (Biometrics, 2006).

Another is to construct the likelihood 
conditionally. 



Dealing with missing values
Consider now the case history:   (1  0  1  1  0  0).

The traditional likelihood contribution is:

1(1-p1)2 p2 3 p3 4

Forming the likelihood in stages, we write:

1(1,0)2(0,1) 3(1,1) 4(1,0) 5(0,0)

and to accommodate missing values, we may write:

1(1,0) 3(1,1) 4(1,0), 

in contrast to the traditional approach, in which this case history is
omitted: a complete case analysis.



Age classes

 For Soay sheep we identify 4 age-classes
for survival. These correspond to animals 
of years of life:

 1, 2, 3-7, >7

 We use these age-classes in the data 
summary table that follows.



Trinomial data for Soay sheep
Year 0 1 2 0 1 2 0 1 2 0 1 2

87 9 21 1 0 2 0 0 11 0 1 3 1

88 7 32 11 0 13 1 2 28 0 2 14 1

89 11 7 36 5 6 8 1 18 11 1 6 15

90 2 16 3 0 0 0 1 7 1 1 11 0

91 0 20 6 0 8 2 2 13 0 0 31 2

92 1 10 42 0 9 5 0 23 3 0 31 16

93 3 28 5 0 6 1 0 29 0 3 28 4

94 9 26 46 1 15 3 4 31 0 5 22 7

95 17 13 38 0 14 2 0 37 2 0 18 14

96 4 35 4 0 4 0 0 49 0 0 19 4

97 6 20 45 2 27 1 0 61 1 0 26 4

98 10 28 31 0 20 0 1 64 0 0 32 10

99 12 10 66 0 8 9 2 54 11 5 11 25

00 3 39 6 0 11 1 1 62 2 1 23 1



Comparison: current weight vs birth weight

Comparison of estimates of       
weight coefficients 

Trinomial with 
W

Trinomial with 
B

Lamb 0.88(0.16) 0.91(0.17)

Yearling 0.28(0.09) -0.05(0.29)

Adult 0.20(0.07) 0.60(0.25)



Goodness-of-fit



Classical model for female sheep

A classical model, resulting from likelihood-ratio 
tests between a small number of selected models 
is:

1(P+M+h), 2(M), 3:7(M), 8+(P+M)

where P denotes population size, M denotes 
March rain and h denotes horn type. 

Regressions are logistic, and those on M are 
parallel. 



Soay sheep (Ovis aries)

Search for age-classes 
with constant 
survival- Bayesian 
approach obtains 
finer/better 
categorisation, and 
more detailed 
description of survival 
in terms of covariates.



Age-dependence (females): Bayes

Posterior probabilityAge-structure

0.0751; 2:3; 4:7; 8+

0.0931; 2:4; 5:7; 7
; 8+

0.2861; 2:7; 8+

0.3841; 2:4; 5:7; 8+

• Note that with probability 1, lambs have a distinct 

survival rate.

• Often, the models with most posterior support are 

close neighbours of each other.



The Bayes solution is richer

Cov 1 2 3 4 8 9 >9

c 0.160 0.101 0.101 0.105 0.768 0.841 0.841

h 0.369 0.039 0.039 0.043 0.055 0.014 0.014

b 1.000 1.000 1.000 0.952 0.225 0.162 0.162

N 0.666 0.403 0.403 0.427 0.919 0.919 0.919

P 0.935 0.203 0.203 0.153 0.355 0.419 0.419

M 0.703 0.464 0.464 0.413 0.186 0.167 0.167

T 0.070 0.195 0.195 0.194 0.735 0.671 0.671

A 0.094 0.215 0.215 0.215 0.154 0.190 0.169

RE 0.255 0.942 0.942 0.907 0.023 0.012 0.012



References
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Determining the parameter 

redundancy of non-linear 

models

Collaborators: 

Ted Catchpole,

Diana Cole
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Complex models and their parameters

 Compartment models

 Ecology

 Econometrics

 Hidden Markov models



Compartment models



Econometrics

 Identifiability of the simultaneous equation 
model:

Byt+ xt = ut,

where yt and ut are vectors of random 
variables, xt is a vector of non-random 
exogenous variables, B and  are matrices 
of parameters, and ut has a normal 
distribution, with dispersion matrix .

 The parameter space is [B, , ], some of 
which may be constrained.



A simple naïve Bayesian network



Ecology

 Estimation of the annual survival 
probabilities of wild animals.

 Collect data on previously marked 
animals.

 These are either found dead or alive.

 Form probability models.

 Fit to data using maximum likelihood, or 
Bayesian methods.



Complexity

 Models may be complicated, incorporating 
age, cohort and time components.

 Models may be simplified by the use of 
covariates.

 Modern focus on multi-site data can 
produce models with many parameters.

 It is often unclear how many parameters 
can be estimated.



An example of a multi-site system

Multisite Systems

AAS
BBS

CCS

A B

C

ABS

BCSCAS

BAS

CBSACS

The parameter S 

represents the “transition”, 

i.e. it  represents both 

survival and movement



The British heron census, Ardea cinerea



Climatic covariates: number of frost-

days in Central England.



The Cormack-Jolly-Seber (CJS) model (1965)

Consider a simple case in which all 
animals are adults, sharing a common 
probability of annual survival, . If p
denotes the probability of recapture then 
the multinomial probabilities 
corresponding to any cohort, of known 
size, of marked birds have the form:

 p,   2 p(1-p),   3 p (1-p)2 , …

Parameters may be time-dependent –
appropriate for adult animals.



Illustration of CJS recapture 

probabilities: a 3-year study

1 p2 1 2 (1-p2)p3 1 2 3(1-p2)(1-p3)p4

2 p3 2 3(1-p3)p4

3 p4



CJS recapture probabilities: what we can 

estimate

1 p2 1 2 (1-p2)p3 1 2 3(1-p2)(1-p3)p4

2 p3 2 3(1-p3)p4

3 p4



Parameter redundancy

 This model has deficiency of one: we can 
only estimate the product, 3p4. All the 
other parameters can be estimated. 



Parameter redundancy

 This model has deficiency of one: we can 
only estimate the product, 3p4. All the 
other parameters can be estimated. 

 What if we only have two years of ringing?



Illustration of CJS recapture 

probabilities: a 3-year study + 2 cohorts

1 p2 1 2 (1-p2)p3 1 2 3(1-p2)(1-p3)p4

2 p3 2 3(1-p3)p4
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Parameter redundancy and identifiability

 A model is identifiable if no two values of the parameters 
give the same probability distribution for the data.

 A model is locally identifiable if there is a distance  > 0, 
such that any two parameter values that give the same 
distribution must be separated by at least .

 A parameter redundant model has parameters that cannot 
be estimated.

 A parameter redundant model is not locally identifiable.

 Full rank models are essentially or conditionally full rank.

 An essentially full rank model is locally identifiable.

 Are essentially full rank models identifiable?



General rules

 In some cases it is possible to establish 
general rules for models of particular 
structures.

 This avoids having to use Maple (see 
later).

 A particular illustration of this occurs with 
age-dependent recovery models



Model notation for recovery models

Ring-recovery models are described as, for 
example:

C/A/C, T/A/C, T/A/T, C/C/T.

In this notation, each model is specified by 3 
letters, which designate, in order,

1. The way we model first-year survival: C or T;

2. The way we model adult survival: C, A or T; and 
A can have categories.

3. The way we model the recovery probability: C, 
A or T.



Steps: age-dependence also in .

 Consider, for example, the model denoted 
by C/A(2,2,3)/A(2,1,1,4). What can we 
estimate here?

 Here we have the parameters:


1
, 2, 2, 3, 3, 4, 4, 4

1, 1, 2, 3, 4, 4, 4, 4



Steps: age-dependence also in .

 Consider, for example, the model denoted 
by C/A(2,2,3)/A(2,1,1,4). What can we 
estimate here?

 Here we have a single step, as shown:


1
, 2, 2 | 3, 3, 4, 4, 4

1, 1, 2 | 3, 4, 4, 4, 4



Theorem 1

 Suppose the first step occurs at age n, 
and let m be the number of parameters 
used in the first n years.

 If m = n+1, the model is parameter 
redundant.

 If 1 < m < n+1, then the step does not 
cause parameter redundancy. 
Furthermore, to test for parameter 
redundancy, the parameters occurring in 
the first n years can be discarded, and the 
count started anew in year n+1.



Theorem 2

 In the age-dependent model T/A/A

 The step at age 1 year does not cause 
parameter-redundancy

 To determine any possible redundancy 
caused by a subsequent step, the age and 
parameter counts begin again after age 1 
year, as in Theorem 1.
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How to test for parameter redundancy 

in general

 Form an appropriate derivative matrix, D.

 Use Maple to determine the symbolic row 
rank of D. Use this to determine if the 
model if parameter redundant or full rank.

 We can also determine which parameter 
combinations can be estimated, if the 
model is parameter redundant.



The method

The approach was for exponential family models. It is 
performed using a symbolic algebra package such as Maple.

1. Calculate D = ( is the mean,  are parameters).

2. The number of  estimable parameters = rank(D).

3. Solve TD = 0. The location of the zeros in  indicates 
which are the estimable parameters. 

4. Solve                     to find the full set of estimable

parameters; (j is the index for >1 solution to TD = 0).
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Example 1: Cormack-Jolly-Seber Model

Little Penguins, Eudyptula minor, capture recapture data (1994 to 1997)

i – probability a penguin survives from occasion i to i+1

pi – probability a penguin is recaptured on occasion i

The set of parameters is:  = [1, 2, 3, p2, p3, p4 ]
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Forming the derivative matrix (take logs first)

rank(D) = 5 < 6, so the model is parameter redundant.

In order to see which of the original parameters we can estimate:

Set TD = 0  T = [ 0, 0, -3 / p4, 0, 0, 1]

Solving PDE, we find that the estimable parameters are: 1, 2, p2, p3, 3p4 
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Expansion theorems

These give conditions that ensure that 
results which hold for a particular 
configuration also hold for larger
configurations.

For instance, the CJS model always has 
deficiency one.



Example – Cormack-Jolly-Seber Model

with covariates

We now set

i = 1/{1+exp( a + bxi )}

For example,  xi could be the mean annual banding weight,
or the SOI.

 = [a, b, p2, p3, p4],

and we find that the model is now full rank.
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Use of the PLUR decomposition

If parameter redundant:

Solve TD = 0. Zeros in  indicate estimable parameters. 

Solve                    to find full set of estimable parameters.

If full rank:

Determine whether essential () or conditionally () full 
rank using the  PLUR  decomposition.

D = PLUR. If det(U) = 0, model is parameter redundant.
If det(U) is close to 0 model is near parameter redundant. 
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Components of the PLUR decomposition, 

available in Maple

We have D=PLUR. 

P is a permutation matrix,

L is lower triangular, with 1s on the 
diagonal,

U is upper triangular,

R is reduced echelon form.



Use of the PLUR decomposition: penguin 
covariates

We have D=PLUR. 

We find that

Hence the model is full rank only if x1  x2,  irrespective of
x3.

     2

3

4

2

4

1

2143221

)exp(1)exp(1)exp(1

)exp()exp()1)((
)(Det

bxabxabxa

bxabxapppxx




U



Example 2: Near-singular model

Consider the model with parameter set,

 [1,1, 1,2, 1,3, a, 1, a]

This is a T/C/A(1,1) recovery model. It is 
full rank, but from the PLUR
decomposition, we find, irrespective of 1,3



A complete theory?

 Maple (eg) can provide all the answers:

 Form the derivative matrix

 Find its rank

 Solve the Lagrange equations (parameter redundant)

 Form the PLUR decomposition (full rank)

 However it can run out of memory if used 
routinely for complex problems.

 Numerical procedures may then be used.

 The symbolic approach may still follow from 
identifying exhaustive summaries and reduced 
form exhaustive summaries



CJS model: removal of a cell

1 p2 1 2 (1-p2)p3 1 2 3(1-p2)(1-p3)p4

2 p3 2 3(1-p3)p4

3 p4

The set of cells here has a redundancy.



Examples of exhaustive summaries

 We see from the last slide that we may 
simplify the formation of the derivative 
matrix by identifying a sufficient set of 
means.

 In fact we have already been doing that, 
by not using the last cell in each 
multinomial, from each row.

 Note the effect of missing data. These 
may affect rank.



Recapture of Dippers, Cinclus cinclus

The table shows  
capture-recapture 
data for European 
Dippers in 1981-
1986.

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1086 98 52



Example 3 – Tag Returns Fisheries Model

Jiang et al (2007): Striped Bass, 

Morone saxatilis.

 = [ F, M1, M2, M3, C1, C2, C3, ],  

F – instantaneous fishing mortality rate

Ma – instantaneous natural mortality rate, at age a

Ca – selectivity coefficient for age a (a > 3 Ca = 1)

 – reporting probability

Pijk – probability fish tagged at age k, released year i
harvested and returned year j

      
ijkijk

ijk

ijkijk

j

iv

ivkivkijk
MFC

FC
MCFMCFP






















 


exp1exp

1



Reparameterisation



Reparameterisation to produce a 

structurally simpler Q



Conclusions from the fisheries example

 In this example Maple lacks memory.

 In this example we move from 16 to 24 
parameters.

 We find a deficiency of 8 in the new parameter 
space. Thus the model is full rank.

 Note that Jiang et al., used numerical analysis 
and found a deficiency of 9, as the model is near-
singular (revealed by a PLUR decomposition in 
the new parameterisation).



Example 4: a multi-state example



Reparameterisation example

 Form a set of sufficient means from the non-zero 
elements of the .

 Form an exhaustive summary from the non-zero 
elements of the component matrices.

 The result is 14 parameter combinations.

 Resulting derivative matrix has rank 12.

 Determine the reduced form exhaustive summary 
from solving the Lagrange partial differential 
equations.

 Use extension theorem.

 Previously (Hunter and Caswell, 2008) a 
numerical approach has been used.



Section

 Introduction and motivation

 Definitions; general rules

 Use of symbolic algebra; expansion 
theorems

 The PLUR decomposition; exhaustive 
summaries; reparameterisation; 
identifiability; weak identifiability

 Future work



Weak identifiability: the Bayesian 

context

 A parameter  is said to be weakly identifiable
when (|Y) ¼ p().

 This is the counterpart to near-redundancy.

 For each parameter in a model, Garrett and 
Zeger(2000) considered the overlap of prior and 
posterior.

 Form  = s min(p(), (|Y))d.

 Garrett and Zeger suggest ad-hoc threshold of 

 = 0.35. This works well for ecological 
applications.



Recapture of Dippers, Cinclus cinclus

The table shows  
capture-recapture 
data for European 
Dippers in 1981-
1986.

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1086 98 52



A Bayesian perspective: the CJS model

 In population ecology we 
may devise models with 
parameters that cannot be 
estimated from the data.

 Symbolic algebra can be 
used to examine whether a 
model is parameter-
redundant.

 In a Bayesian context, it is 
interesting to consider the 
overlap between priors, 
p() and posteriors (|x).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.5

1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

2

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

3

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

4

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.5

6

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.5

3
.0

p2

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

p3

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

p4

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

p5

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

p6

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.5

p7



Male mallard, Anas platyrhyncos

Model: T/C/A (1,1)

1,i, a, 1, a here 
only two 
parameters, a and 
a are strongly 
identified. The 
model is near-
redundant.
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Relationship of overlap to interquartile 

range: simpler to calculate



Other areas

 Econometrics (Rothenburg)

 Compartment modelling (Walter)

 Contingency tables (Goodman)

 Naïve Bayesian Networks (Whiley)



A simple naïve Bayesian network



Naïve Bayesian Networks in general

 We have n observable nodes, Y1, …, Yn, 
and a single observable node Z.

 All nodes are binary.

 2n+1 parameters: p, 1|1,…, n|1 1|0,…n|0.



Naïve Bayesian network ctd

 In this example we can use a reparameterisation 
to show that

 For n>2 the model is full rank

 We can use the PLUR decomposition to determine 
parameter redundant sub-models: for example, 
when n=3,

Det(U)=-p3(1-p)3(1|1-1|0)
2(2|1-2|0)

2(3|1-3|0)
2.

 Previously conclusions followed a particular 
analysis.



Compartment models



Simple compartment model



Conclusion: new work

 Use of covariates

 Use of exhaustive summaries

 Use of PLUR decomposition

 Conclusions for complex examples using 
the same approach

 Overlap of priors and posterior
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STATE-SPACE MODELLING

SECTION 7



References



Information about wildlife systems

 Diverse sources of data often exist:

 Demographic studies

 Population surveys (censuses)

 Trends in demographic processes (survival, 

productivity) and abundance are often 

investigated separately.

 But abundance and demography are related

 Combined estimation is appealing



Questions

 How do we form models and likelihoods for the 

different sources of data?

 How do we combine likelihoods?

 Do we have to form exact likelihoods?

 Why not take estimates from some likelihoods 

and plug them into other likelihoods?



Fecundity

 The key demographic processes 

involve survival, reproduction

and movement.  

 Estimation of fecundity can be 

challenging, but is typically 

easier than the estimation of 

survival.  For example, Cory‟s 

shearwaters (Calonectis 

diomedea) lay just one egg.



Population surveys

 We obtain information on abundance from population 

surveys

 Typically the surveys are annual and the end-result is a 

single number summarising abundance:

 number of breeders at time t

 total number of animals

 The numbers are either estimates or indices of the actual 

numbers

 Populations exhibit a range of dynamics

 Compare dynamics of linnets, lapwings, herons and Soay 

sheep





Dynamics



Modelling survey data I

 There are, potentially, several aims in modelling survey 

data:

 To estimate true population size;

 To estimate biologically relevant parameters;

 To predict future population sizes.

 We shall provide an all-purpose method

 The first task is to build a model for all variables, 

observable or not



Modelling survey data II

 Abundance and demography are related:

 Abundance at time t is a function of survival, fecundity and 

abundance at time t-1.

 A state-space model framework is often used to make this 

idea explicit.



State-space models I

 A state-space model consists of 2 stochastic parts:

1. A dynamic model describing the evolution of a „state‟ from 

one year to the next:

2. A model linking the observations to the „state‟:

 The terms εt and ηt are errors incorporating:

 ε: process variability

 η: measurement uncertainty

tttt nTn 1

tttt nZy 



State-space models II

 State-space models can be recognised as stochastic 
versions of 

 But they are much more general (e.g. non-linear etc)



General definition

 A state-space model consists of two 

stochastic processes:

 An unobserved state process, nt, that is a function 

of past values, nt-1

 State process density: g(nt|nt-1;θ).

 A known observation process, yt, that is a function 

of the current state

 Observation process density: f(yt|nt;θ).

 θ: system parameters

 Could be time and space-dependent



Inference for state-space models

 Inference problems for state-space models fall into 
three broad categories:

1. Filtering: p(nt|y1:t)

2. Smoothing: p(nt|y1:T)

3. Prediction: p(nt+m|y1:t), m>0.



Inference for state-space models

 Inference problems for state-space models fall into 
three broad categories:

1. Filtering: p(nt|y1:t)

2. Smoothing: p(nt|y1:T)

3. Prediction: p(nt+m|y1:t), m>0.

 Filtering is the key problem, since it forms the basis 
of everything else

 In general, it involves evaluating high-dimensional 
integrals, which can be problematic.

 But see.....Modelling Population Dynamics Workshop 
(Andrew Thomas)



Linear Gaussian model

 A special case is the linear Gaussian model:

nt: numbers at age t

Tt: Leslie matrix

Yt: observed abundances

θ includes survival, fecundity etc

 In this case, the Kalman algorithms can be used to estimate nt

and θ

 No need for numerical or stochastic integration

 Details in Besbeas et al (2002).
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The Kalman filter (KF)

 The following equations constitute the KF (Durbin and 
Koopman, 2001):

with and                      . 

 The algorithm can be derived and expressed in several 
ways.
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Related algorithms

 Missing values, prediction, smoothing follow from 

basic output:

 Missing values/prediction

 Use of at+1

 Natural extension to m-steps

 Smoothed estimates

 Result from at|t and another set of explicit recursions



The likelihood function

 The likelihood function also follows from basic output:

 The parameters θ include demographic parameters , f 
from the matrix population model.

   ttttkf vFvFL 1 log
2

1
constantlog 



Combining likelihoods

 Assuming independence, we integrate the demographic 
and survey information on θ into a joint likelihood:

      ,,,,,,,, fLpLfpL kfmrrj 



Mark 
recapture 
recovery 

data

Census 
data
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Integrated Population Modelling
Combining Sources of Information



Advantages of integration

1. Simultaneous description of all the data

2. Generally more precise parameter estimators

3. Reduction in the correlation of estimators arising from 

census data alone

4. Coherent estimation of parameters not estimable from 

separate analyses



Example I: Lapwings (Besbeas et al, 2002)

 The Lapwing in Britain 
has been declining for 
several years.

 Amber list of species of 
conservation concern in 
Britain.

 Regarded as an indicator 
species for farmland birds.



Lapwing ring-recovery data

 Data on Lapwings ringed as chicks during the 
years 1963-1997

Year 
Ringed

Number
Ringed

Year Recovered

1964 1965 1966 ... 1997 1998

1963 1147 14 4 1 ... 0 0

1964 1285 20 3 ... 0 0

1965 1106 10 ... 0 0

... ... ... ... ...

1996 4488 7 0

1997 4339 5



Lapwing survey data

 Use an index based on the Common Birds Census.

 Annual territory counts are made at a number of survey 
sites, and from these an index is estimated from a 
generalized linear model.

 Lapwing index is available from 1965 to 1998.

Year
Population 

Size

1965 1092

1966 1100

1967 1234

... ...

1997 953

1998 866



SSM: Observation model

 Let N1,t denote the true number of one-year old female 

birds at time t, and Na,t denote the number of adult 

female birds at time t.

 We assume that

where 2 is essentially an estimation error.

 We then impose a process model on the underlying 

population sizes

 2

, ,~ tat NNy



SSM: Process model

 A natural model will be to assume that

and

 Here ft denotes the productivity rate (number of 

females per female)

 These can be easily and accurately approximated by 

Normal distributions, even for small population sizes.
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Parameter Modelling

 We allow each of our parameters potentially to vary with 

time as follows:

 Survival:

 logit Φ1,t = α1+β1fdayst

 logit Φa,t = α1+β1fdayst

 Productivity & recovery:

 log ft = αρ+βρt

 logit λt = αλ+βλt



Likelihoods and Integrated Model

 Component likelihoods:

 Mrr:

 Survey:

 Joint Likelihood:

 Assuming mrr and census data are independent

  ,,1 amrrL

  ,,,1 fL akf

      ,,,,,,,,, 111 fLLfL akfamrraj 



Lapwing results

 Model Φ1(fdays),Φa(fdays)/λ(year)/f(year)



Parameter estimates

 Minor differences 

between mrr and 

joint estimates/SEs

 The original 

Poisson/binomial 

model provides very 

similar results – but 

is more difficult to 

fit

 Integrated 

modelling allows 

estimation of 

productivity

Parameter
Estimate SE

Mrr Joint Mrr Joint

Φ1 intercept 0.516 0.523 0.067 0.067

Φ1 slope -0.024 -0.023 0.007 0.007

Φa intercept 1.501 1.521 0.068 0.069

Φa slope -0.036 -0.028 0.005 0.004

λ intercept -4.567 -4.563 0.035 0.035

λ slope -0.573 -0.584 0.064 0.063

f intercept -1.151 0.088

f slope -0.432 0.074

σ 159.47 21.87



Assumptions made

 Normal errors

 Linear state-space model

 Known Kalman filter starting values

 Dispersion properly ascribed

 Independence between different data sets

 Observation variance cannot depend on the current state(s)



How to initiate the filter

 Using prior information (when available)

Otherwise

 Unconditional initialisation

 Diffuse initialisation

 Approximate diffuse

 Exact diffuse

 Maximum-likelihood

 Use of stable age-distribution



Using the stable age-distribution

 The initial mean vector a1 is taken to be proportional to the 

stable age distribution, with a maximal positive CI, e.g.

 Practical issues with v:

 Unknown parameters is Leslie matrix, T

 Time-varying matrix model, Tt.

 Details in Besbeas and Morgan (2007a)

  ,96.1      ,
2

111 adiagPva 



Pros and cons of the methods

 Unconditional initialisation: limited to stationary systems.

 Approximate diffuse initialisation: arbitrary decisions are 

required.

 Exact diffuse initialisation: difficult for complex models and 

multivariate observations.

 Maximum likelihood: Multiple and/or boundary optima.

 Use of stable age-distribution: simple, and uses the Leslie 

matrix.  Best in simulation comparisons.



Approximate Integration

 Recall we maximise:

 Calculation of Lj difficult when Lmrr is derived from specialised 

programs (e.g. MARK) or raw data not available.

 Simplify calculations using asymptotic distribution of MLEs:

replacing  by     .

 Equivalently,

      ,,,,,, fLLfL kfmrrj 
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Comparison of            and  mrrL  ̂,̂;ˆ mrrL



Approximate Joint Likelihood

 Now maximise

 Nuisance parameters in Lmrr (e.g. ) omitted – details in 

Besbeas et al (2003)

      ,,ˆ,̂,ˆ,,ˆ fLLfL kfmrrj 



Lapwing Parameter Estimates

Parameter
Estimate Standard Error

Exact Approximate Exact Approximate

1 intercept 0.5231 0.5226 0.0679 0.0678

1 slope -0.0228 -0.0227 0.0070 0.0070

a intercept 1.5210 1.5191 0.0693 0.0686

a slope -0.0279 -0.0280 0.0045 0.0045

 intercept -4.5632 0.0352

 slope -0.5841 0.0637

 intercept -1.1513 -1.1489 0.0886 0.0876

 slope -0.4323 -0.4314 0.0743 0.0740

 159.47 159.61 22.06 21.87





Multi-site state-space models

 Basic structure of the state space model is the same:

 State vector, nt will now include site-specific states

 Observations yt will now be multivariate as site-specific 

observations will be made at each time point.

tttt nTn 1

tttt nZy 



Multi-site 
mark 

recapture 
data

Multi-site 
census 

data
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Advantages of MULTI-SITE integration

1. Simultaneous description of all the data

2. Generally more precise parameter estimators

3. Reduction in the correlation of estimators arising from 

census data alone

4. Coherent estimation of parameters not estimable from 

separate analyses



Simulation

Ringed animals are located in two distinct geographical sites.  

The animals are marked at an initial time point and then on 

subsequent occasions the sites are revisited and any re-

sightings of marked individuals are recorded and recoveries 

of dead marked animals are made.

Suppose also that total census counts are made at each time 

period for each of the sites.

The simulation is run for 5 periods of recapture 15 census 

counts.



Simulation

 Parameters arising from mark-recapture-recovery data:

 (r): annual survival probability at site r

 p(r): capture probability at site r

 : recovery probability

 (r,s): movement probability of an animal from site r to site s

 Standard Arnason-Schwarz Model



Simulation

 NJ(x): Number of juvenile animals in site x

 NA(x): Number of adult animals in site x
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Simulation Results

Parameter
Simulated

Value
MRR Data Only MRR and Census

(1) 0.85 0.832 (0.0999) 0.807 (0.0798)

(2) 0.41 0.316 (0.1064) 0.325 (0.0970)

p(1) 0.00 0.157 (0.1291) 0.184 (0.1207)

p(2) 0.41 0.301 (0.1889) 0.263 (0.1669)

(1,2) -2.20 -2.238 (0.2101) -2.140 (0.1153)

(2,1) -1.39 -1.321 (0.1893) -1.354 (0.1691)

 0.00 -0.017 (0.1012) -0.019 (0.1009)

f 0.10 - 0.185 (0.0714)

 4.61 - 4.448 (0.2089)



Example II: Cormorants (McCrea et al, 2010)

Great Cormorant, Phalacrocorax carbo sinensis



Three 
neighbouring 
colonies:

• Vorsø (VO)

• Mågeøerne (MA)

• Stavns Fjord (SF)



 Recapture data collected between 1989 and 1994

 Initial ringing was carried out on non-breeding individuals

 Birds were not recaptured until they had become breeding individuals

 Must model transition between non-breeding and breeding states as well 

as geographical movements between the colonies



Multi-site Cormorant census data
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Transitions



State and Observation Equations
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Model Selection
Model n AIC ¢AIC

Á(from ¤ state+ time); B(from ¤ to); N(to); R(from+ T ); f(site); ¾(¢) 70 13.2 0.0

Á(from ¤ state+ time); B(from); N(to); R(from+ T ); f(site); ¾(¢) 67 14.4 1.2

Á(from ¤ state+ time); B(to); N(to); R(from+ T ); f(site); ¾(¢) 67 16.4 3.2

Á(from ¤ state+ time); B(from); N(from ¤ to); R(from+ T ); f(site); ¾(¢) 70 16.9 3.8

Á(from ¤ state+ time); B(¢); N(to); R(from+ T ); f(site); ¾(¢) 65 19.0 5.8

Á(from ¤ state+ time); B(¢); N(from ¤ to); R(from+ T ); f(site); ¾(¢) 68 21.5 8.4

Á(from ¤ state+ time); B(¢); N(to); R(from+ T ); f(¢); ¾(¢) 63 27.7 14.5

Á(from ¤ state+ time); B(¢); N(from ¤ to); R(from+ T ); f(¢); ¾(¢) 66 29.8 16.6

Á(from ¤ state+ time); B(¢); N(to); R(T ); f(¢); ¾(¢) 61 51.8 38.6

Á(from ¤ state); B(¢); N(to); R(from+ T ); f(¢); ¾(¢) 49 54.7 41.6

Á(from ¤ state); B(¢); N(from ¤ to); R(T ); f(¢); ¾(¢) 50 70.0 56.8

Á(from ¤ state); B(¢); N(to); R(T ); f(site); ¾(¢) 49 79.4 66.2

Á(from ¤ state); B(from); N(to); R(T ); f(¢); ¾(¢) 49 80.9 67.8

Á(from ¤ state); B(to); N(to); R(T ); f(¢); ¾(¢) 49 81.5 68.3

Á(from ¤ state); B(¢); N(to); R(T ); f(¢); ¾(¢) 47 82.4 69.3

Á(from ¤ state); B(¢); N(to); R(T ); f(¢); ¾(site) 49 82.5 69.3

Á(from ¤ state); B(¢); N(to+ time); R(T ); f(¢); ¾(¢) 61 84.0 70.8

Á(from ¤ state); B(time); N(to); R(T ); f(¢); ¾(¢) 61 85.5 72.4



Integrated Population Model

Parameter Mark-recapture MLE (SE) Integrated MLE (SE)

Á1 0.61 ( 0.31 ) 0.47 ( 0.26 )

Á2 1.20 ( 0.45 ) 1.48 ( 0.24 )

Á3 0.93 ( 0.28 ) 0.60 ( 0.15 )

Á4 1.14 ( 0.27 ) 1.18 ( 0.12 )

Á5 1.22 ( 0.30 ) 0.94 ( 0.16 )

Á6 0.68 ( 0.21 ) 0.91 ( 0.16 )

Á7 1.37 ( 0.36 ) 0.87 ( 0.16 )

Á8 0.30 ( 0.18 ) 0.39 ( 0.12 )

Á9 0.54 ( 0.20 ) 0.58 ( 0.15 )
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BAYESIAN ANALYSIS

SECTION 8



Bayesian Methods in Ecology

Collaborators:

Steve Brooks

Ruth King

Olivier Gimenez



Bayesian methods in ecology: Outline

 History and Introduction

 Bayes vs Classical

 Selecting a prior

 Bayesian Integration

 Bayesian p-values

 Model selection



History

 Bayesian methods date to the original 
paper by the Rev. Thomas 

Bayes which was read to 

the Royal Society in 1763.

 Known then as inverse 

probability the approach 

dominated statistical 

thinking throughout the 19th Century.



What is the Bayesian Approach?

 The approach is based upon the idea that 
the experimenter begins with some prior 
beliefs about the system

 And then updates these beliefs on the 
basis of observed data

 This updating procedure is based upon 
what is known as Bayes‟ Theorem:

( | Data) / f(Data | ) p()



A Difference in Philosophy

 The Classical approach provides a quite 
distinct philosophy from the Bayesian one.

 Bayesians believe that the model 
parameters have a true but unknown 
distribution which is represented by .

 The Classical statistician believes that the 
model parameters have a true but 
unknown value, which is estimated by the 
MLE.



Summarising the Bayesian’s Beliefs
 The posterior distribution or the corresponding 

marginal distributions are the best summaries of 
the data. 

 However, point estimates and uncertainty intervals 
are often more interpretable.

 It is the process of summarising the posterior that 
is the source of the computational complexity of 
the Bayesian approach.

 The classical approach also requires computation, 
but the maximisation of the likelihood function is 
usually relatively straightforward.



Point Estimates

 Though there are various ways to obtain 
point estimates for parameters of interest 
from the posterior, the most common is to 
take the posterior mean.

 The posterior mean is obtained via 
integration:

E() = s  ( | Data) d.



Integration Problems

 There are two problems with this 
integration:

1. For realistically complex problems the 
integration is not analytically tractable and 
numerical methods must be used.

2. Bayes‟ theorem only gives us the posterior 
distribution up to a constant of proportionality.

[Recall: ( | Data) / f(Data | ) p()]

Thus the normalisation constant must be 
determined before the mean can be computed



The Classical Interval

 The Classical interval is known as the confidence 
interval.

 Given data Y, the 100(1-)% confidence interval 
[a(Y),b(Y)] for  then satisfies the statement:

P([a(Y),b(Y)] contains ) = 1-.

 Since  is assumed fixed, it is the interval 
(constructed from the data) that is uncertain -
it‟s randomness derives from the stochastic 
nature of the data under theoretical replications 
of the data collection process.



The Bayesian Interval

 The Bayesian interval is known as the credible 
interval.

 Given data Y, the 100(1-)% credible interval 
[a,b] for  then satisfies the statement:

P( lies in [a,b])= 1-.

 Here, it is  that is the random variable and the 
interval is fixed - the Bayesian conditions on the 
data observed rather than thinking about the 
long-term properties of the estimation procedure 
under theoretical replications of the data-
collection experiment.

[Recall Classical interval: P([a(Y),b(Y)] contains ) = 1-.



The Benefits of Being Bayesian
 For Example:

 It‟s no longer necessary to restrict attention to 
normal models.

 More complex (integrated, state-space) 
processes can be analysed with little additional 
effort.

 Unrealistic assumptions and simplifications can 
be avoided.

 Random effects and missing values are easily 
dealt with.

 Model choice and model averaging are 
relatively easy even with large model spaces.



Prior Elicitation and Specification

 Before we go on to discuss further the 
computational tools that have fuelled the 
“Bayesian Revolution” we pause to think a little 
more deeply about the prior elicitation and 
specification process. 

 There are basically two situations that can be 
encountered:

 There is no prior information

 There is prior information that needs to be expressed in 
the form of a suitable probability distribution.



Informative Priors

 These priors aim to reflect information 
available to the analyst that is gained 
independently of the data being studied.

 A prior elicitation process is often used 
which involves choosing a suitable family 
of prior distributions for each model 
parameter and then attempting to find 
parameters for that prior that accurately 
reflects the information available.

 This is often an iterative process.



Prior Elicitation

 The analyst might begin by getting some 
idea of the range of plausible model 
parameter values and using this to get 
suitable prior parameters.

 Plots can be made and summary statistics 
calculated which can then be shown to the 
expert to see if they are consistent with 
their beliefs.

 Any mismatches can be used to alter the 
prior parameters and the process is 
repeated.



No Information

 In the absence of any prior information on 
one or more model parameters we wish to 
ensure that this lack of knowledge is 
properly reflected in the prior.

 Typically, this is done by choosing a prior 
distribution with a suitably wide variance.

 At first, it may seem that taking a flat 
prior that assigns equal probability to all 
possible parameter values is a sensible 
approach.



Flat Priors

 However, flat priors are rarely invariant to 
reparameterisations of the model.

 What may appear flat for parameters under one 
parameterisation may be far from flat under 
another.

 In ecological applications where many 
parameters of interest are probabilities (e.g., 
survival, recapture etc.) expressed as logistic 
regressions e.g.,

logit(t) =  +  t. 

 Do you want a prior that is flat on -space or    
(, )-space?



Flat Priors ctd…

 Another problem with flat priors is that for 
continuous variables, these are improper 
distributions unless bounds on the 
parameter space are imposed.

 Improper priors can lead to improper 
posteriors which, in turn, can mean that 
the posterior mean simply does not exist.

 On the other hand, the imposition of 
bounds which are too restrictive may 
mean an unrealistically restricted posterior 
is obtained.



Jeffreys’ Prior

 One solution is to use the Jeffreys‟ prior.

 This prior attempts to minimise the 
amount of influence of the prior on the 
posterior and is invariant to 
reparameterisations of the model.

 It is based upon estimation of Fisher‟s 
Information matrix – the same matrix 
used to estimate Classical SE‟s.



Vague Priors

 In practice most people choose vague priors 
which are both proper and have large variance.

 An alternative is to adopt a hierarchical prior 
structure in which the prior parameters are 
assumed unknown and themselves given hyper-
prior distributions.

For example, rather than saying

 » N(0, 1000)

We might instead say

 » N(0,2),   with 2 » (a,b).



Vague Priors ctd…

 This dilutes the influence on the posterior 
of any prior assumptions made and 
essentially creates random effects of the 
model parameters.

 We will explore the parallel between 
hierarchical priors and random effects 
later on.

 The influence of the prior can always be 
assessed via a sensitivity analysis and we 
will also return to this later.



A Simple Example

 Let‟s take a simple example to recap some 
of the main issues discussed so far.

 120 deer were radio-tracked over Winter.

Number 
released

Alive Dead Other

Treatment 61 19 38 4

Control 59 21 38 0



Example ctd...

 So, n=57 deer were assigned to the “treatment 
group” of which m=19 survived the Winter,

 Of interest is the probability of over-Winter 
survival, call it q,  for the general population 
within the treatment area.

 The obvious estimate is simply to take the ratio 
m/n=19/57.

 How would the Classical statistician justify this 
estimate?



The Model and MLE
 Our model is that we have a simple 

Binomial experiment (assuming 
independent and identically distributed 
draws from the population), so that

 The classical approach is to maximise the 
corresponding likelihood with respect to q
to obtain the entirely plausible MLE:

q = m/n = 19/57.



The Bayesian Approach

 The Bayesian starts off with a prior.

 Now, the one thing we know about q is 
that is a continuous random variable and 
that it lies between zero and one.

 Thus, a suitable prior distribution might be 
the Beta which is defined on this range.

 Suppose we assume a priori that

q » (a,b)

 So that 



The Posterior

 Then, we have that 

i.e., q » (a+m, b+n-m) a posteriori.

 If we take a Uniform prior i.e., a=b=1, 
then we get the following prior and 
posterior distributions.



Posterior Plot



Posterior Summaries

 Similarly, under the Uniform prior we get:

 Posterior mean = 0.338

 Posterior mode = 0.333

 Posterior standard deviation = 0.061

 Recall that the MLE is 0.333 with a 
standard error of 0.062.



The Posterior ctd...

 For a general prior, the posterior has mean

where w = n/(a+b+n).

 Thus, the posterior mean is a weighted 
average of the prior mean and the MLE.

 Note that as n increases, the weight w
tends to 1 and so the posterior mean 
converges to the MLE.



More Posterior Plots



The Posterior ctd…

 The posterior mean converges to the MLE 
irrespective of the prior parameters a and 
b (though the speed at which convergence 
occurs will vary with the prior).

 Similarly, the posterior variance converges 
to zero as the sample size increases.

 Thus, the posterior itself converges to a 
point mass at the MLE.



A General Result

This is a general result, the Bayesian and 
Classical estimates will always agree if 
there is sufficient data, so long as the 
MLE is not explicitly ruled out by the 
prior.



Which parameters can we identify?

 In population ecology we 
may devise models with 
parameters that cannot be 
estimated from the data.

 Symbolic algebra can be 
used to examine whether a 
model is parameter-
redundant.

 In a Bayesian context, it is 
interesting to consider the 
overlap between priors, 
p() and posteriors (|x).
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Male mallard, Anas platyrhyncos

Model: 1,i, a, 1, 
a here only two 
parameters, a and 
a are strongly 
identified.
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Bayesian Integration Made Easy

 Recall that Bayesian inference is based upon the 
estimation of posterior summaries such as the 
mean.

 And that these require integration of the 
posterior density e.g. 

E () = s  ( | Data) d.

 Expectations of this sort can be estimated by 
drawing samples 1,…,T from the posterior 
distribution and then calculating the sample 
mean.

 This is known as Monte Carlo Integration.



From Integration to Sampling

 Thus, we replace the integration problem 
by a sampling problem.

 Two problems:

 In general, (|Data) represents a high-
dimensional and complex distribution from 
which samples would usually be difficult to 
obtain.

 In addition, large sample sizes are often 
required and so powerful computers are 
needed to generate these samples. 



The 1990’s

 At the beginning of the 1990‟s two things 
happened:

 The computer revolution – which made 
powerful computers an affordable reality.

 MCMC was introduced to the statistical 
literature – which provided a framework for 
generating samples from arbitrarily complex 
distributions.



Markov Chain Monte Carlo

 MCMC methods perform Monte Carlo 
Integration using a Markov chain to 
generate observations from .

 A Markov chain is simply a stochastic 
sequence of numbers where each value in 
the sequence depends only upon the last.

 We might label the sequence 0,1,2,… 
etc. 



MCMC ctd…

 The value for 0 is chosen from some arbitrary 
starting distribution.

 At time t, we update the state of the chain from t

to t+1.

 This updating is performed in such a way that the 
probability distribution associated with the tth

observation gets closer and closer to ( | Data) as 
t increases.

 We say that the distribution of the chain converges
to .

 We return to the concept of convergence later on.



MCMC Magic

 MCMC therefore allows us to construct a 
sequence of values whose distribution 
converges to the posterior distribution of 
interest.

 We can then use this sequence of values to 
obtain empirical (Monte Carlo) estimates of 
any posterior summaries of interest e.g., 
posterior means.

 The beauty of MCMC is that the updating 
procedure remains relatively simple no 
matter how complex the posterior 
distribution of interest.



Updating our Chain

 OK, so we can do the integration by 
sampling from the posterior.

 We can sample from the posterior by 
generating a Markov chain.

 We construct a Markov chain using an 
appropriate updating scheme.

 But how do we do these updates?

 There are several standard approaches…



Metropolis Hastings

 Most MCMC methods are special cases of 
the general Metropolis Hastings scheme.

 The MH scheme generates t+1 from t in a 
two-step procedure.

 Step 1. At iteration t, sample  » q( | t).

 is known as the candidate point

q is known as the proposal distribution



MH ctd…

 Step 2. With probability

set

t+1 =  (acceptance)

else, set

t+1 = t (rejection)

 Steps 1 and 2 are then repeated to obtain first 
1 and then 2 etc.



“Flavours” of MH

 Within the MH scheme there are a number 
of special cases depending upon the 
(essentially arbitrary) choice of proposal 
distribution.

 One basic and common choice is to base 
the proposal around the current point e.g., 
 » N(t, 2).

 In this case, the acceptance ratio 
simplifies so that 

 (t, ) = min [1, ()/(t)]



Tuning the RW Metropolis 

Algorithm

 This is known as the random walk 
Metropolis algorithm.

 In order to balance the size of the 
proposed moves with the chance of 
accepting them the proposal variance is 
often tuned to obtain an acceptance rate 
of 20-40%. 

 Most MH algorithms require some initial 
pilot tuning in order to get satisfactory 
performance.



Why is the Size of the Move 

Important?

 If you propose extremely small jumps, 
you are bound to accept them, but you 
will take a long time to move around the 
state space.

 Small jumps induce correlations (known 
as autocorrelations) between successive 
observations.

 If you have strongly correlated 
observations, you require far bigger 
sample sizes and therefore longer MCMC 
runs.



Good Trace/Bad Trace

Variance too small

Just right

Too large



Single-Update MH

 Typically, the posterior will be high-
dimensional.

 In this case, we can either update all 
parameters simultaneously.

 Or, we can update each parameter in turn. 
This is known as single-update Metropolis 
Hastings.

 Sometimes it is convenient to do 
something in between and update 
parameters in blocks.



Gibbs Updates

 A special case of the single-update MH 
algorithm arises if we set the proposal 
distribution for any parameter to be the 
conditional posterior distribution of that 
parameter given current value of the 
others.

 In this case, the acceptance probability is 
always exactly 1.

 This is known as a Gibbs-sampler (or 
simply Gibbs) update.



Gibbs Updates ctd…

 One useful feature of the Gibbs update 
(beyond no longer having to perform the 
accept-reject step) is that it requires no 
pilot-tuning.

 Also the proposal is adaptive in that it 
depends upon the state of the other 
parameters and so changes from iteration 
to iteration.

 Gibbs updates tend to be highly efficient 
MCMC-wise but can be computationally 
more burdensome.



Hybrid Schemes

 In practice we often use a mixture of MH 
and Gibbs updates.

 For parameters with standard conditional 
distributions, we use Gibbs updates.

 And, for the rest, we might use random 
walk updates.

 Since Gibbs updates are so good, we 
would like to use them as often as 
possible…



Conjugacy

 When selecting our prior, it is often useful 
to select what is known as a conjugate 
prior family.

 For a particular parameter, the associated 
prior is conjugate if the corresponding 
posterior conditional is of the same form.

 E.g., a Normal prior leading to a Normal 
posterior conditional.

 Conjugate priors are often adopted so that 
Gibbs updates can be used.



Posterior Summaries

 Posterior means and variances etc. are 
easily obtained.

 Intervals usually come in the form of 
Highest Posterior Density Intervals which 
are credible intervals with the minimum 
width.

 E.g., for a (1-)% HPDI, order the 
observations and take [(i), (j)] where   
i+j =  T and T denotes the sample size.



Density Estimates

 Marginal density estimates are also often of 
interest.

 Basic histograms or kernel smoothed 
empirical estimates can be used.

 Rao-Blackwell estimates are also useful.

 Here,

 If the posterior conditional is standard, then 
the density estimate, f, is easily normalised.



Run Lengths

 There are two elements to be considered 
when determining the simulation length:

 The time required for convergence.

 The post-convergence sample size required for 
suitably small Monte Carlo errors.

 We begin with convergence assessment...



Convergence Assessment

 Here, we‟re looking to determine how long 
it takes for the Markov chain to converge 
to the target distribution.

 In practice, we discard observations from 
the start of the chain and just use 
observations from the chain once it has 
converged.

 The initial observations that we discard 
are referred to as the burn-in.



Trace Plots

 The simplest method to determine the 
length of the burn-in period is to look at 
trace plots.

 You can often see the individual 
parameters converging from their starting 
position to values based around a 
constant mean.

 This is a fairly efficient method, but is not 
robust.



Trace Plot Example

Converged after, say, 

2000 iterations?



Multiple Replications

 Running several replications from different 
starting points provides additional 
reassurance.

 Basically, if you run the chain several 
times from different starting points and 
they all give you the same posterior 
estimates...

 Then, this suggests that no major modes 
have been missed in any one simulation 
and that each has probably converged.



Convergence Assessment

 This approach is formalised in the so-called BGR 
diagnostic. Available in WinBUGS.

 There are various implementations, all based upon 
the idea of using an analysis of variance to 
determine whether or not there are any differences 
in estimates from different replications. 

 The simplest implementation is to compare the 
width of the empirical 80%CI obtained from all 
chains combined, with the corresponding mean 
within-chain interval width.

 Convergence is assumed when these are roughly 
equal, implying that all chains have roughly equal 
variability i.e., similar amounts of information.



Prior Sensitivity

 As discussed earlier it is important to 
assess the sensitivity of key results to the 
prior assumptions.

 In the presence of reasonably informative 
data, there should be little prior sensitivity.

 Prior sensitivity in itself is not a problem, 
but... 

 Extreme prior sensitivity often points to 
problems such as parameter redundancy or 
overly restrictive prior assumptions.



Bayesian P-values
 Bayesian p-values involve generating a new data 

set Yt from the model at each MCMC iteration.

 A discrepancy statistic D(Yt,et) is then used to 
measure the distance between the generated 
data and the corresponding expected values, et.

 The proportion of times that 

D(Y,et) > D(Yt,et)

is recorded and should be close to 0.5.

 Plots of D(Y,et) vs D(Yt,et) may also be useful.



Bayesian P-values Plot

P-value here

is 0.513



Model Selection

 In the classical framework, likelihood ratio tests 
or information criterion (e.g. AIC) are often used.

 There is a “similar‟‟ Bayesian statistic – the DIC.

 This is programmed within WinBUGS – however 
its implementation is not suitable for hierarchical 
models (e.g. random effect models).

 In addition, the DIC is known to give falacious 
results in even simple problems.

 Within the general Bayesian framework, there is 
a more natural way of dealing with the issue of 
model discrimination.



Bayesian Approach

 We treat the model itself to be a unknown 
parameter to be estimated.

 Then, applying Bayes‟ Theorem we obtain the 
posterior distribution over both parameter and 
model space:

(m, m | data) Ç L(data | m, m) p(m) p(m).

 Here m denotes the parameters in model m.

Likelihood Prior on parameters 

in model m Prior on model m



Posterior Model Probabilities

 The Bayesian approach then allows us to 
quantitatively discriminate between competing 
models via posterior model probabilities:

(m | data) = s (m, m | data) dm

Ç p(m) s L(data | m, m) p(m) dm

 Note that we need to specify priors on both the 
parameters and now also on the models 
themselves.

 Thus we need to specify a prior probability for 
each model to be considered.



Bayes Factors

 These are often used to compare models and are 
simply defined to be the ratio of the posterior odds 
to prior odds. For two models, m1 and m2, the 
Bayes factor of model 1 to model 2 is given by:

(m1| data)/p(m1)

(m2| data) p(m2)

Not worth mentioning< 3

Very strong evidence> 150

Strong evidence20-150

Positive evidence3-20

InterpretationBayes factor
• Kass and Raftery 

(1995) give the following 

“rule of thumb” guide:

BF12 =



Model Averaging

 Model averaging obtains an estimate of a 
parameter, based on all plausible models, and 
takes into account both model and parameter 
uncertainty.

 For parameter , common to models m1,…mk, the 
model averaged estimate is:

 (| data) =     (, mi | data)

=     (| data, mi) (mi | data).

 Thus each estimate of  is weighted according to 
the corresponding posterior probability.

k

i=1


k

i=1




Monte Carlo estimates

 The posterior probability of model m is 
given by:

(m | data) Ç p(m) s L(data | m, m) p(m) 

dm

 However  Ep[f(x)] = s f(x) p(x) dx.

 So that,

(m | data) Ç p(m) Ep[L(data | m, m)].

 Thus, we can estimate this expression by 
using a Monte Carlo estimate. 



Monte Carlo estimates ctd.

 The simplest approach is to draw observations 
1,…N from the prior distribution p(), and 
estimate,

L(data | m) = N-1 L(data | i, m)

! Ep[L(data | m, m)] as N ! 1

 Thus, this estimate converges to the posterior 
model probability (up to proportionality).

 Posterior model probabilities can be estimated by 
calculating this for each model and renormalising 
(so that the probabilities sum to one).

N

i=1




Further Monte Carlo estimates

 However, this approach is often very inefficient,  
and can be very unstable.

 Alternative approaches essentially involve 
changing the distribution from which the  are 
drawn (and hence the expression for the Monte 
Carlo estimate). 

 For example, an alternative estimate would be to 
sample  from the posterior distribution and use,

L(data | m) = [N-1 L(data | i, m)-1]-1
N

i=1




General Comments

 The Monte Carlo estimates are the easiest to 
program and conceptualise.

 However, they are often very inefficient and do 
not always converge within a feasible number of 
iterations.  

 In addition, each individual model needs to be 
considered in turn, which may be infeasible when 
there are a large number of models. 

 We consider in more detail alternatives which use 
the same underlying principle as MCMC.



MCMC-based estimates
 We have a posterior distribution (over parameter 

and model space) defined up to proportionality:

(m, m | data) Ç L(data | m, m) p(m | m) p(m)

 If we can sample from this posterior distribution 
then we are able to obtain posterior estimates of 
summary statistics of interest.

 In particular the posterior model probabilities can 
be estimated as the proportion of time that the 
chain is in each model.

 So, all we need to do is define how we construct 
such a Markov chain.



Reversible Jump MCMC

 The reversible jump MCMC algorithm allows us to 
construct a Markov chain with stationary 
distribution equal to the posterior distribution.

 It is simply an extension of the Metropolis-
Hastings algorithm that allows moves between 
different dimensions. 

 This algorithm is needed because the number of 
parameters, m, in model m, may differ between 
models. 

 Note that this algorithm needs only one Markov 
chain irrespective of the number of models!!



Markov chain

 Each iteration of the Markov chain essentially 
involves two steps:

1. Within model moves – updating each parameter 
using standard MCMC moves (Gibbs sampler, 
Metropolis-Hastings)

2. Between model moves – updating the model using 
a reversible jump type move. 

 Then, standard MCMC-type processes apply, 
such as using an appropriate burn-in, obtaining 
summary statistics of interest etc.



Within model moves: MH algorithm

 Recall, the MH algorithm involves two steps:

1. At each iteration k, with current parameter values 
k, sample a candidate point  from some proposal 
distribution q, i.e.  ~ q(| k).

2. Accept the proposed value with probability, 
min(1,A), where,

( | data) q(k | )

(k | data) q( | k)

and set k+1 = .

Else, if the move is rejected, set k+1 = k .

A =



Between model moves: RJ step

 This is simply a generalisation of the MH 
algorithm, which allows moves between 
different models.

 A single move involves two steps:
1. Proposing to move to a different model;

2. Accepting this proposed model with some 
probability.

 To illustrate the RJ algorithm, we consider a 
particular example relating to variable selection 
(e.g. covariate analysis).



Example: variable selection

 Suppose that the survival rate  is logistically 
regressed on possible covariates x and y.

 However, it is unknown a priori which 
covariates (if any) affect the survival rates.

 There are two possible models:

1. logit  =  +  x;

2. logit  =  +  x +  y

where  and  (and  for model 2) are 
parameters to be estimated.



RJ update

 Suppose that the Markov chain is currently in 
model 1 (logit  =  +  x).

 Step 1: Proposing new model.

 Set  = (, ).

 Suppose that at iteration k of the Markov chain we are in 
state (, m)k.

 We propose to move to state (‟, m‟), where

‟ = (, , ).

 Then, we simulate parameter value  from some 
proposal distribution q.



 Step 2: Accept/reject step:

 Accept the new model m‟, and set (, m)k+1 = (‟, m‟) 
with probability min(1,A), where,

(‟,m‟| data) P(m|m‟)

(, m | data) P(m‟|m) q(),

where P(m|m‟) denotes the probability of proposing to 
move from model m to model m‟.

 Else reject the move and set (, m)k+1 = (, m)k. 

 Then, in the reverse move, where we propose to move 
from (‟, m‟) to state (, m), we remove parameter 
(or equivalently set it equal to zero).

 This move is then accepted with probability, min(1,A-

1). 

A =

RJ Update (cont)



**General RJ updates**

 The previous RJ step can only be applied to 
nested models – more generally, moves are 
possible between any two models:

 Step 1: Proposing new model.

 Suppose that at iteration k the Markov chain is in model 
m with parameters (, m)k.

 We propose to move to state (‟, m‟).

 Then, we define a (bijective) function g, such that, 

(‟, u‟) = g(, u)

where u and u‟ are sets of random variables with 
density function q(u) and q’(u’), respectively. 



 Step 2: Accept/reject step:
 Accept the new model m‟, and set (, m)k+1 = (‟, m‟) 

with probability min(1,A), where,

(‟,m‟| data) P(m|m‟) q’(u‟)     (‟, u‟)

(, m | data) P(m‟|m) q(u)     (, u)

where P(m|m‟) denotes the probability of proposing to 
move from model m to model m‟.

 Else reject the move and set (, m)k+1 = (, m)k.

 This final term is called the Jacobian.

 This formula is not as complicated as it appears!!

A =

**General RJ updates (cont)**



Case Study: Soay sheep

 Heterogeneity within a 
population can often 
be explained via 
different covariates.

 For illustration we 
shall consider in detail 
MRR (mark-recapture-
recovery) data 
relating to Soay 
sheep.

Capture history

Covariate values

Missing values



Soay sheep

 We place vague priors on the parameters present 
in each model.

 Priors also need to be specified on the models.

 Placing an equal prior on each model places a 
high prior mass on models with a large number of 
age groups, since the number of models increases 
with the number of age groups.

 Thus, we specify we an equal prior probability on 
each marginal age structure and a flat prior over 
the covariate dependence given the age structure



Results – Soay sheep

 We use the RJ algorithm to explore and 
summarise the posterior distribution.

 The posterior distribution is very complex, and so 
we present results from the marginal 
distributions for the survival rates only. 

 We initially consider the age-dependence 
structure before the covariate dependence. 



Age-dependence (females)

Posterior probabilityAge-structure

0.0751; 2:3; 4:7; 8+

0.0931; 2:4; 5:7; 7
; 8+

0.2861; 2:7; 8+

0.3841; 2:4; 5:7; 8+

• Note that with probability 1, lambs have a distinct 

survival rate.

• Often, the models with most posterior support are 

close neighbours of each other.



Covariate Dependence

BF = 3

BF = 20

BF = Bayes factor



Influence of parameters

Birth weight NAO Index

Age 1 Age 

10+



Results – Shags (MRR data)

0.0471, 2,3, Ap1, p2, p3(t), pA(t)1(t), 2, 3
, A (t)

0.1261,3, 2, Ap1, p2, p3(t), pA(t)1(t), 2, 3,A

0.2041, 2,3, Ap1, p2, p3(t), pA(t)1(t), 2,3, A

0.3091, 2,3, Ap1, p2, p3(t), pA(t)1(t), 2,3, A(t)

Posterior 
probability

Recovery 
rate

Recapture ratesSurvival rate

This model for the recapture rates has 

posterior probability 0.996.

Some variability but 

neighbouring models



General Comments
 RJMCMC is the most widely used algorithm when 

there is model uncertainty.

 The acceptance probabilities for RJ moves are 
typically lower than for MH updates.

 Longer simulations are generally needed to explore 
both parameter and model space.

 Only a single Markov chain is necessary, 
irrespective of the number of possible models!!

 However, RJMCMC cannot (currently) be generally 
programmed in WinBUGS and specific codes 
generally need to be written.



The benefits of a Bayesian approach

 Random effects are easily incorporated

 Missing values are easily dealt with

 Hierarchical models are easy to construct

 Model averaging is easily done…

 State-space models can be constructed 
without the need for normal 
approximations

 Easy application to longitudinal models

 Easy application of complex spline 
regressions.



Are there dangers in Bayesian methods?

“The main danger is that they will be used 
automatically. In the application of Bayesian 
methods, you first need to assign some basic 
probabilities (and perhaps utilities) to give the 
problem structure; then the computer can derive 
other probabilities. One must think about the 
basic values and it is not usually satisfactory to 
use a normal density and non-informative priors. 
This distinction between the thinking you and the 
un-thinking, calculating personal computer is 
essential.”  Dennis Lindley, Significance, 2004.



Possible reading

 Bayesian Model Averaging: a tutorial. (1999), 
Hoeting, J.A. et al. Statistical Science, 14, 382-
417.

 Model choice: A minimum posterior predictive 
loss approach. (1998) Gelfand, A.E. and Ghosh, 
S.K. Biometrika, 85, 1-12.

 Bayesian model choice via Markov chain Monte 
Carlo methods. (1995) Carlin, B.P. and Chib, S. 
JRSSB, 57, 473-484.

 Sensitivity of Bayes estimators to hyper-
parameters with an application to maximum yield 
from fisheries. (2004) Millar, R.B. Biometrics, 60, 
536-542.



The end
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