Capture-recapture models in ecology: multi-state developments

Rachel McCrea
German Statistical Week
Hamburg, September 2015
COLLABORATORS

- Hannah Worthington
- Ming Zhou
- Eleni Matechou
- Diana Cole
- Ruth King
- Richard Griffiths
OUTLINE

INTRODUCTION

MULTISTATE REMOVAL MODELS
 Background
 New model
 Parameter redundancy

MULTISTATE INTEGRATED STOPOVER MODELS
 Background
 New model
 Results

DISCUSSION
INDIVIDUAL MARKING

Capture-recapture data

- 1 0 0 1 0
- 1 1 0 1 1
- 0 0 1 0 1
- . . .
CLOSED POPULATION MODEL, M_t

- p_t: probability an individual is captured at occasion t.

- Capture-recapture data and probabilities
 - 1 0 0 1 0 \(p_1(1 - p_2)(1 - p_3)p_4(1 - p_5) \)
 - 1 1 0 1 1 \(p_1p_2(1 - p_3)p_4p_5 \)
 - 0 0 1 0 1 \((1 - p_1)(1 - p_2)p_3(1 - p_4)p_5 \)
 - ...
CLOSED POPULATION MODEL

- Some individuals will not be captured at all during the study;
- The encounter history for these individuals is given by
 \[0 \ 0 \ 0 \ 0 \ 0 \ (1 - p_1)(1 - p_2)(1 - p_3)(1 - p_4)(1 - p_5) \]
- It is the number of individuals who are never captured that we need to estimate.
The likelihood has the form:

\[L \propto \frac{N!}{(N - D)!} \prod_{i=1}^{D} \Pr(h_i) \times \Pr(h_0)^{N-D} \]

- \(h_i \): observed encounter history for individual \(i \);
- \(h_0 \): observed encounter history of never encountered;
- \(N \): population size;
- \(D \): number of observed individuals.
CLOSED POPULATION MODEL, M_b

- p: probability of initial capture;
- c: probability of subsequent capture.

Capture-recapture data and probabilities

- $1 \ 0 \ 0 \ 1 \ 0 \ \ p(1 - c)(1 - c)c(1 - c)$
- $1 \ 1 \ 0 \ 1 \ 1 \ \ pc(1 - c)cc$
- $0 \ 0 \ 1 \ 0 \ 1 \ \ (1 - p)(1 - p)p(1 - c)c$
- \ldots
REMOVAL DATA

\(n_t \): size of sample removed at sample \(t \).
LINK TO MODEL M_b

- Basic geometric model
 \[
 \Pr(\text{individual is removed at occasion } t) = (1 - p)^{t-1}p
 \]
- Same model as used for time to conception for human couples;
- Equivalent to estimating p in M_b, and assuming $c = 0$.

![Graph showing the number of individuals over occasions.](image)
Link to model M_b

- Basic geometric model
 \[\Pr(\text{individual is removed at occasion } t) = (1 - p)^{t-1}p \]
- Same model as used for time to conception for human couples;
- Equivalent to estimating p in M_b, and assuming $c = 0$.

![Graphs showing data distribution over occasions](image.png)
Why do data exhibit unexpected peaks?
AN UNDERGROUND CITY?
Multistate removal model

- Develop a two-state model, with one unobservable state with capture probability of 0;
- Naturally fits into a multievent framework, which is an HMM.
SIMULATION RESULTS

Comparison of Estimated Ns

Estimated Ns

ME
Geo
SIMULATION RESULTS
SIMULATION RESULTS
PARAMETER REDUNDANCY

- A model is parameter redundant if you cannot estimate all of the parameters;
- Parameter redundancy is diagnosed by forming a derivative matrix $D = \partial \kappa / \partial \theta$ where κ denotes an exhaustive summary for a model that provides a unique representation of the model and θ denotes the parameters;
- If $\text{rank}(D) = \text{dim}(\theta)$, all parameters are estimable;
- If $\text{rank}(D) < \text{dim}(\theta)$ the model is parameter redundant.
PARAMETER REDUNDANCY

- Model $\pi, p, \psi_{12}, \psi_{21}$ is parameter redundant;
- The estimable parameters are: $\pi p, p\psi_{21}$ and $p(\psi_{12} - 1) - \psi_{12} - \psi_{21}$.
- If p is modelled using a temporal covariate, the model is full rank.
JOLLY-SEBER MODEL

- The studied population might not be closed, but still want to be able to estimate population size;
- Parameters for the Jolly-Seber model:
 - N: population size;
 - β_t: proportion of individuals first available for capture at occasion $t+1$;
 - p_t: probability an individual is captured at occasion t;
 - ϕ_t: probability an individual present in the study area at occasion t remains in the study area until occasion $t+1$.
JOLLY-SEBER MODEL

When forming the probability of an observed encounter history we need to sum over possible entry and departure times.

- Suppose individual i is first captured at occasion f_i and last captured at occasion l_i;
- $x_{ij} = 1$ if individual i is captured at occasion j, $x_{ij} = 0$ otherwise.

$$
\Pr(h_i) = \sum_{b=1}^{f_i} \sum_{d=l_i}^{T} \beta_{b-1} \left(\prod_{j=b}^{d-1} \phi_j \right) (1 - \phi_d) \left\{ \prod_{j=b}^{d} p_j^{x_{ij}} (1 - p_j)^{1-x_{ij}} \right\}
$$
JOLLY-SEBER MODEL

Corresponding probability of an individual not captured during the study:

\[
Pr(h_0) = \sum_{b=1}^{T} \sum_{d=1}^{T} \beta_{b-1} \left(\prod_{j=b}^{d-1} \phi_j \right) (1 - \phi_d) \left\{ \prod_{j=b}^{d} (1 - p_j) \right\}
\]

The likelihood, once again, has the same form:

\[
L \propto \frac{N!}{(N - D)!} \prod_{i=1}^{D} Pr(h_i) \times Pr(h_0)^{N-D}
\]

(1)
STOPOVER MODEL

- Generalised version of the Jolly-Seber model (Pledger et al, 2009)
- Parameters are defined to be age-dependent, where age corresponds to the time spent in study area:
 - \(N \): population size;
 - \(\beta_t \): proportion of individuals first available for capture at occasion \(t+1 \);
 - \(p_t(a) \): probability an individual which entered the study \(a \) occasions previously is captured at occasion \(t \);
 - \(\phi_t(a) \): probability an individual present in the study area at occasion \(t \), which entered the study \(a \) occasions previously, remains in the study area until occasion \(t+1 \).

- Can naturally be expressed in an HMM framework.
Multistate stopover model

- Individuals may be captured in different states;
- Multistate extensions exist for many capture-recapture models;
- Demonstrate that it’s possible to build transitions and state-dependence into the basic stopover model;
- HMM provides a useful, efficient framework for this.
Multistate stopover model

\[\beta \]

arrivals
Multistate stopover model
Multistate stopover model
Multistate stopover model
INTEGRATING OVER MULTIPLE YEARS
INTEGRATING OVER MULTIPLE YEARS
INTEGRATING OVER MULTIPLE YEARS
SIMULATION RESULTS
SIMULATION RESULTS
SIMULATION RESULTS
ADVANTAGES

- General framework, with other models forming a special case;
 - Robust design (closed and open);
 - Closed population models - including a multistate closed population model (Worthington et al, 2015);
 - Stopover and Jolly-Seber models;
- Using all available data in a coherent model - compare Besbeas et al (2002);
- Natural generalisation of model selection methods for multistate models
 - Transdimensional simulated annealing (Brooks et al, 2003);
 - Step-wise procedures using score tests (McCrea and Morgan, 2011);
DISCUSSION

- **Removal modelling:**
 - Developed a new model for individuals moving into unobservable states;
 - Matechou et al (2015) has relaxed the assumption of closure within removal models and these methods could be included in the multievent removal framework;
 - Further investigation of the poor performance of near-redundant models.

- **Stopover modelling:**
 - HMM framework has provided an efficient approach for dealing with complex capture-recapture data;
 - Integrating the analysis of multiple years of data has improved precision and accuracy of parameter estimates;
 - Assessment of goodness-of-fit is an active area of research.
REFERENCES

